<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

4.10: Powers and Roots of Complex Numbers

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated17 minsto complete
Practice Powers and Roots of Complex Numbers
This indicates how strong in your memory this concept is
Estimated17 minsto complete
Estimated17 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Manually calculating (simplifying) a statement such as: (1417i)5 or (32i)4 in present (rectangular) form would be a very intensive process at best.

Fortunately you will learn in this lesson that there is an alternative: De Moivre's Theorem. De Moivre's Theorem is really the only practical method for finding the powers or roots of a complex number, but there is a catch...

What must be done to a complex number before De Moivre's Theorem can be utilized?

Watch This

This lesson reviews the two opposite operations involving De Moivre's Theorem: finding powers, and finding roots. The video lessons review each operation separately.

Embedded Video:

a. Raising Complex Numbers to a Power:

- James Sousa: De Moivre's Theorem

b. Finding Roots of Complex Numbers:

- James Sousa: Determining the Nth Roots of a Complex Number


Powers of Complex Numbers

How do we raise a complex number to a power? Let’s start with an example

(-4 - 4i)3 = (-4 - 4i) x (-4 - 4i) x (-4 - 4i) =

In rectangular form, this can get very complex. What about in r cis θ form?

(44i)=42 cis(5π4)

So the problem becomes

42 cis(5π4) 42 cis(5π4) 42 cis(5π4)

and using our multiplication rule from the previous section,

(44i)3=(42)3 cis(15π4)

Notice, (a + bi)3 = r3 cis 3 θ

In words: Raise the r-value to the same degree as the complex number is raised and then multiply that by cis of the angle multiplied by the number of the degree.

Reflecting on the example above, we can identify De Moivre's Theorem:

Let z = r(cos θ + i sin θ) be a complex number in rcisθ form. If n is a positive integer, zn is
zn = rn (cos() + i sin())

It should be clear that the polar form provides a much faster result for raising a complex number to a power than doing the problem in rectangular form.

Roots of Complex Numbers

I imagine you noticed long ago that when an new operation is presented in mathematics, the inverse operation often follows. That is generally because the inverse operation is often procedurally similar, and it makes good sense to learn both at the same time.

This is no exception:

The inverse operation of finding a power for a number is to find a root of the same number.
a) Recall from Algebra that any root can be written as x1/n
b) Given that the formula for De Moivre’s theorem also works for fractional powers, the same formula can be used for finding roots:

Example A

Find the value of (1+3i)4


tan θref=31,

and θ is in the 1st quadrant, so


Using our equation from above:

z4=r4 cis 4θ

z4=(2)4 cis 4π3

Expanding cis form:

z4=16(cos(4π3)+i sin(4π3))


Finally we have

z4 = -8 - 13.856i

Example B

Find 1+i


First, rewriting in exponential form: (1 + i)½

And now in polar form:

1+i=(2 cis(π4))1/2

Expanding cis form,

=(2(cos(π4)+i sin(π4)))1/2

Using the formula:

=(21/2)1/2(cos(12π4)+i sin(12π4))

=21/4(cos(π8)+i sin(π8))

In decimal form, we get

=1.189( 0.924 + 0.383i)

=1.099 + 0.455i

To check, we will multiply the result by itself in rectangular form:

(1.099+0.455i)  (1.099+0.455i)=1.0992+1.099(0.455i)+1.099(0.455i) + (0.455i)2


=1.208+i0.208 or


Example C

Find the value of x:x3=(13i)


First we put 13i in polar form.

Use x=1, y=3 to obtain r=2, θ=5π3

let z=(13i) in rectangular form

z=2 cis (5π3) in polar form



Use De Moivre’s Equation to find the first solution:

x1=21/3cis(5π/33) or 21/3cis(5π9)

Leave answer in cis form to find the remaining solutions:

n = 3 which means that the 3 solutions are 2π3 radians apart or

x2=21/3cis(5π9+2π3) and x3=21/3cis(5π9+2π3+2π3)

Note: It is not necessary to add 2π3 again. Adding 2π3 three times equals 2π. That would result in rotating around a full circle and to start where it all began- that is the first solution.

The three solutions are:




Each of these solutions, when graphed will be 2π3 apart.

Check any one of these solutions to see if the results are confirmed.

Checking the second solution:


=1.260[cos(11π9)+i sin(11π9)]



Does (-0.965 – 0.810i)3 or (-0.965 – 0.810i) (-0.965 – 0.810i) (-0.965 – 0.810i)


Concept question follow-up

A complex number operation written in rectangular form, such as: (134i)3 must be converted to polar form to utilize De Moivre's Theorem.


De Moivre's Theorem is the only practical manual method of identifying the powers or roots of complex numbers.

Guided Practice

1) What are the two square roots of i?

2) Calculate (1+0i)4 What are the four fourth roots of 1?

3) Calculate \begin{align*}(\sqrt3 + i)^7\end{align*}


1) Let \begin{align*}z = \sqrt{0 + i}\end{align*}

\begin{align*}r = 1, \ \theta = \pi/2\end{align*} or \begin{align*}z = \left [1 \times \ cis \frac{\pi}{2} \right ]^{1/2}\end{align*} Utilizing De Moivre’s Theorem:
\begin{align*}z_1 = \left [1 \times \ cis \frac{\pi}{4} \right ]\end{align*} or \begin{align*}z_2 = \left [1 \times \ cis \frac{5\pi}{4} \right ]\end{align*}
\begin{align*}z_1 = 1\left ( \mbox{cos}\frac{\pi}{4} + i \ \mbox{sin}\frac{\pi}{4} \right )\end{align*} or \begin{align*}z_2 = 1 \left (\mbox{cos} \frac{5\pi}{4} + i \ \mbox{sin} \frac{5\pi}{4} \right )\end{align*}
\begin{align*}z_1 = 0.707 + 0.707i\end{align*} or \begin{align*}z_2 = -0.707 - 0.707i\end{align*}

Check for z1 solution: (0.707 + 0.707i)2 = i?

0.500 + 0.500i + 0.500i + 0.500i2 = 0.500 + i + 0.500(-1) or i

2) Let z = 1 or z = 1 + 0i Then the problem becomes find z1/4 = (1 + 0i)1/4

Since \begin{align*}r = 1 \ \theta = 0, \ z^{1/4} = [1 \times cis \ 0]^{1/4}\end{align*} with \begin{align*}z_1 = 1^{1/4} \left (\mbox{cos}\ \frac{0}{4} + i \ \mbox{sin}\ \frac{0}{4} \right )\end{align*} or \begin{align*}1(1 + 0)\end{align*} or \begin{align*}1\end{align*}

That root is not a surprise. Now use De Moivre’s to find the other roots:

\begin{align*}z_2 = 1^{1/4} \left [\mbox{cos}\left (0 + \frac{\pi}{2}\right ) + i \ \mbox{sin}\left (0 + \frac{\pi}{2} \right ) \right ]\end{align*} Since there are 4 roots, dividing 2π by 4 yields 0.5π
or 0 + i or just i \begin{align*}z_3 = 1^{1/4} \left [\mbox{cos}\left (0 + \frac{2\pi}{2}\right ) + i \ \mbox{sin}\left (0 + \frac{2\pi}{2} \right ) \right ]\end{align*} which yields z3 = -1
Finally \begin{align*}z_4 = 1^{1/4} \left [\mbox{cos}\left (0 + \frac{3\pi}{2}\right ) + i \ \mbox{sin}\left (0 + \frac{3\pi}{2} \right ) \right ]\end{align*} or \begin{align*}z_4 = -i\end{align*}

The four fourth roots of 1 are 1, i, -1 and -i

3) To calculate \begin{align*}(\sqrt3 + i)^7\end{align*} start by converting to \begin{align*}rcis\end{align*} form First find \begin{align*}r\end{align*} Recall \begin{align*}r = \sqrt{\sqrt{3}^2 + 1^2}\end{align*}

\begin{align*}r = \sqrt{3 + 1}\end{align*}
\begin{align*}r = 2\end{align*}

If \begin{align*}cos \theta = \frac{\sqrt3}{2}\end{align*} and \begin{align*}sin \theta = \frac{1}{2}\end{align*} then \begin{align*}\theta = 30^o\end{align*} and is in quadrant I. Now that we have trigonometric form, the rest is easy:

\begin{align*}(\sqrt{3} + i)^7 = [2 (cos 30^o + i sin 30^o)]^7\end{align*} ..... Write the original problem in \begin{align*}r cis\end{align*} form
\begin{align*}2^7[ (cos (7 \cdot 30^o) + i sin(7 \cdot 30^o)]\end{align*} ..... De Moivre's Theorem
\begin{align*}128 [-\frac{\sqrt3}{2} + \frac{-1}{2}i]\end{align*} ..... Simplify
\begin{align*}(\sqrt{3} + i)^7 = -64\sqrt3 - 64i\end{align*} ..... Simplify again

\begin{align*}\therefore (\sqrt{3} + i)^7 = -64\sqrt3 - 64i\end{align*}


Perform indicated operation on these complex numbers:

  1. Divide: \begin{align*}\frac{2 + 3i}{1 - i}\end{align*}
  2. Multiply: \begin{align*}(-6 - i)(-6 + i)\end{align*}
  3. Multiply: \begin{align*}\left (\frac{\sqrt{3}}{2} - \frac{1}{2} i \right )^2\end{align*}
  4. Find the product using polar form: \begin{align*}(2 + 2i)(\sqrt{3} - i)\end{align*}
  5. Multiply: \begin{align*}2(\mbox{cos} \ 40^\circ + i \ \mbox{sin} \ 40^\circ) \bullet 4(\mbox{cos} \ 20^\circ + i \ \mbox{sin} \ 20^\circ)\end{align*}
  6. Multiply: \begin{align*}2 \left (\mbox{cos} \ \frac{\pi}{8} + i \ \mbox{sin} \ \frac{\pi}{8} \right ) \bullet 2 \left (\mbox{cos} \ \frac{\pi}{10} + i \ \mbox{sin} \ \frac{\pi}{10} \right )\end{align*}
  7. Divide: \begin{align*}2(\mbox{cos} \ 80^\circ + i \ \mbox{sin} \ 80^\circ) \div 6(\mbox{cos} \ 200^\circ + i \ \mbox{sin} \ 200^\circ)\end{align*}
  8. Divide: \begin{align*}3\ \mbox{cis}(130^\circ) \div 4\ \mbox{cis}(270^\circ)\end{align*}

Use De Moivre’s Theorem:

  1. \begin{align*}[3(\mbox{cos} \ 80^\circ + i \ \mbox{sin} \ 80^\circ)]^3\end{align*}
  2. \begin{align*}\left [\sqrt{2} \left (\mbox{cos}\ \frac{5\pi}{16} + i \ \mbox{sin} \ \frac{5\pi}{16} \right ) \right ]^4\end{align*}
  3. \begin{align*}\left (\sqrt{3} - i \right )^6\end{align*}
  4. Identify the 3 complex cube roots of \begin{align*}1 + i\end{align*}
  5. Identify the 4 complex fourth roots of \begin{align*}-16i\end{align*}
  6. Identify the five complex fifth roots of \begin{align*}i\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More


complex number A complex number is the sum of a real number and an imaginary number, written in the form a + bi.
De Moivre's Theorem De Moivre's theorem is the only practical manual method for identifying the powers or roots of complex numbers. The theorem states that if z= r(\cos \theta + i \sin \theta) is a complex number in r cis \theta form and n is a positive integer, then z^n=r^n (\cos (n\theta ) + i\sin (n\theta )).

Image Attributions

Show Hide Details
Difficulty Level:
At Grade
Date Created:
Nov 01, 2012
Last Modified:
Mar 23, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original