3.8: Common and Natural Logarithms
By now, you know that \begin{align*}log_2 64=x\end{align*}
Is there a way to convert from one base to another, so we can use a calculator?
Watch This
Embedded Video:
 Brightstorm: Algebra 2  Common and Natural Logarithms
Guidance
Although a log function can have any positive number as a base, there are really only two bases that are commonly used in the real world. Both may be written without a base noted, like: \begin{align*}log x\end{align*}
The common log is a log with base 10. It is used to define pH, earthquake magnitude, and sound decibel levels, among many many other common realworld values.
The natural log, sometimes written \begin{align*}ln (x)\end{align*}
Using a calculator for logs
You may have noticed that the common log and the natural log are the only log buttons on your calculator. We can use either the common log or the natural log to find the values of logs with other bases.
The equation \begin{align*}log_b x = \frac{log x} {log b}\end{align*}
You may also see the change of base formula as \begin{align*}\mathit\log_b x = \frac{ln x} {ln b}\end{align*}
Using the change of base formula, we can find the common log (or the natural log) equivalent of any other base so that we can use a calculator to find the value of an expression.
Consider log_{3} 35. If we use the change of base formula to convert to base 10, and then the \begin{align*}log\end{align*}


\begin{align*}log_3 35 = \frac{log35} {log3} = 3.23621727\end{align*}
log335=log35log3=3.23621727 .

\begin{align*}log_3 35 = \frac{log35} {log3} = 3.23621727\end{align*}
Example A
Evaluate each log
a. \begin{align*}log 1\end{align*} 
b. \begin{align*}log 10\end{align*} 
c. \begin{align*}log\sqrt{10}\end{align*} 

Solution:
Remember that \begin{align*}log x\end{align*}

a. \begin{align*}log 1 = 0\end{align*}
log1=0 because \begin{align*}10^{0} = 1\end{align*}100=1 . 
b. \begin{align*}log 10 = 1\end{align*}
log10=1 because \begin{align*}10^{1} = 10\end{align*}101=10 
c. \begin{align*}log \sqrt{10} = \frac{1} {2}\end{align*}
log10−−√=12 because \begin{align*}\sqrt{10} = 10^{1/2}\end{align*}10−−√=101/2
Example B
For each log value, determine two integers between which the log value should lie. Then use a calculator to find the value of the log.
a. log 50  b. log 818 

Solution:
 a. log 50

 The value of this log should be between 1 and 2, as 10^{1} = 10, and 10^{2} = 100.
 Using a calculator, you should find that log 50 ≈ 1.698970004.
 b. log 818

 The value of this log should be between 2 and 3, as 10^{2} = 100, and 10^{3} = 1000.

 Using a calculator, you should find that log 818 ≈ 2.912753304.
Example C
Estimate the value, and then use the change of base formula to find the value of \begin{align*}log_2 17\end{align*}
Solution:
\begin{align*}log_2 17\end{align*}
Concept question wrapup You should have no problem with the question from the beginning of the lesson now: \begin{align*}log_7 247=x\end{align*}
Using the change of base formula: \begin{align*}log_7 247 = \frac{log 247} {log 7}\end{align*}
Using a calculator to find the common logs of 247 and 7, we get (approximately): \begin{align*}\frac{2.4} {.8} = 2.8313\end{align*}
We can verify with: \begin{align*}7^{2.8313} = 247\end{align*} \begin{align*}\therefore log_7 247 = 2.8313\end{align*} 

Vocabulary
Common Logarithm: A common logarithm is a log with base 10k. The log is usually written without the base.
Natural Logarithm: A natural log is a log with base e. The natural log is written as ln.
Trancendental Number: A number that is not the root of any rational polynomial function. Examples include \begin{align*}e\end{align*} and \begin{align*}\pi\end{align*}.
\begin{align*}e\end{align*} (constant): A constant used as the base of natural logarithms, equal to approximately 2.71828.
Guided Practice
Questions
1) Find the value of each natural log.
a. \begin{align*}ln 100\end{align*}  b. \begin{align*}ln \sqrt{e}\end{align*} 

2) Solve the equation: \begin{align*}8^{x3}=24\end{align*}
3) Solve the equation: \begin{align*}5^x = 3 \cdot 7^x\end{align*}
4) Find the value: \begin{align*}ln6 + ln7\end{align*}
5) Find the value: \begin{align*}log 5  log 3\end{align*}
Answers
1) a. \begin{align*}ln 100\end{align*} is between 4 and 5. You can estimate this by rounding \begin{align*}e\end{align*} up to 3, and considering powers of 3:

 \begin{align*}3^4 = 81\end{align*} and \begin{align*}3^5 = 243\end{align*}

 Using a calculator, you should find that \begin{align*}ln 100\end{align*} ≈ 4.605171086.
 b. Recall that a square root is the same as an exponent of 1/2. Therefore \begin{align*}ln \sqrt{e} = ln (e^{1/2}) = 1/2\end{align*}
2) To solve: \begin{align*}8^{x3}=24\end{align*}:
 \begin{align*}log 8^{x3} = log 24\end{align*} : Take the log of both sides.
 \begin{align*}(x3) log 8 = log 24\end{align*} : Using \begin{align*}log x^y = y log x\end{align*}
 \begin{align*}x = \frac{log 24}{log 8} +3\end{align*} : Divide both sides by \begin{align*}log 8\end{align*} and add \begin{align*}3\end{align*}.
 \begin{align*}x = \frac{1.380}{.903} +3\end{align*} : With a calculator
 \begin{align*}x = 4.528\end{align*} : With a calculator
3) To solve: \begin{align*}3^x(2^{3x}) = 7(5^x)\end{align*}:
 \begin{align*}3^x(2^3)^x = 7(5^x)\end{align*} : Rule of exponents \begin{align*}(x^y)^z = x^{yz}\end{align*}
 \begin{align*}3^x(8^x) = 7(5^x) \to 24^x = 7(5^x)\end{align*} : By multiplication
 \begin{align*}(\frac{24}{5})^x = 7\end{align*} : Divide both sides by \begin{align*}5^x\end{align*}
 \begin{align*}log (\frac{24}{5})^x = log 7\end{align*} : Take the log of both sides
 \begin{align*}xlog (\frac{24}{5}) = log 7\end{align*} : Using \begin{align*}log x^y = y log x\end{align*}
 \begin{align*}x = \frac{log7}{log\frac{24}{5}}\end{align*} : Divide both sides by \begin{align*}log (\frac{24}{5})\end{align*}
 \begin{align*}x = 1.24\end{align*} : With a calculator
4) Use a calculator to find the values:
 \begin{align*}ln6 = 1.79175\end{align*} and \begin{align*}ln7 = 1.94591\end{align*}
 \begin{align*}1.79175 + 1.94591 = 3.73766\end{align*}
5) Recall that a \begin{align*}log\end{align*} without a specified base is commonly \begin{align*}log_{10}\end{align*}:
 \begin{align*}log 5 = .69897\end{align*} and \begin{align*}log 3 = .477121\end{align*} : With a calculator
 \begin{align*}.69897  .477121 = .221849\end{align*}
Practice
 What is a common logarithm? Where are common logs most commonly used?
 What is a natural logarithm? Where are natural logs commonly used?
Evaluate each expression:
 \begin{align*}log\frac{17^4}{5}\end{align*}
 \begin{align*}log 7(4^3)\end{align*}
Convert to a common logarithm and evaluate:
 \begin{align*}log_{6} 832\end{align*}
 \begin{align*}log_{11} 47\end{align*}
 \begin{align*}log_{3} 9\end{align*}
Convert to a natural logarithm and evaluate:
 \begin{align*}log_{7} 94\end{align*}
 \begin{align*}log_{5} 256\end{align*}
 \begin{align*}log_{9} 0.712\end{align*}
Find the values of the natural logarithms:
 \begin{align*}ln 56\end{align*}
 \begin{align*}ln 2000\end{align*}
 \begin{align*}ln 950.1\end{align*}
 \begin{align*}ln .9\end{align*}
Convert the Natural Logs to exponential form, and solve.
 If \begin{align*}ln e = x\end{align*} and \begin{align*}e^x = e\end{align*} then \begin{align*}x =?\end{align*}
 If \begin{align*}ln e^5\end{align*} then \begin{align*}x =?\end{align*}
 If \begin{align*}ln e^a = x\end{align*} then \begin{align*}x =?\end{align*}
 If \begin{align*}ln e^{3} = x\end{align*} then \begin{align*}x =?\end{align*}
Change of Base Formula
Let and be positive numbers, and . Then, . More specifically, and , so that expressions can be evaluated using a calculator.Common Log
A common logarithm is a log with base 10. The log is usually written without the base.Common Logarithm
A common logarithm is a log with base 10. The log is usually written without the base.e
is an irrational number that is approximately equal to 2.71828. As .Natural Log
A natural logarithm is a log with base . The natural logarithm is written as ln.Natural Logarithm
A natural logarithm is a log with base . The natural logarithm is written as ln.Transcendental Number
A transcendental number is a number that is not the root of any rational polynomial function. Examples include and .Image Attributions
Here you will explore the common logarithm, which is a log base 10, and the natural logarithm, which is a log base e. You will also learn how to convert from one base to another when working with logs.