Dismiss
Skip Navigation

8.11: Quotient Rule and Higher Derivatives

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated29 minsto complete
%
Progress
Practice Quotient Rule and Higher Derivatives
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated29 minsto complete
%
Estimated29 minsto complete
%
Practice Now
MEMORY METER
This indicates how strong in your memory this concept is
Turn In
Loading... 

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Vocabulary

TermDefinition
differentiable A differentiable function is a function that has a derivative that can be calculated.
Instantaneous acceleration The instantaneous acceleration of an object is the change in velocity of the object calculated at a specific point in time.
Instantaneous velocity The instantaneous velocity of an object is the velocity of the object at a specific point in time.
quotient rule In calculus, the quotient rule states that if f and g are differentiable functions at x and g(x) \ne 0, then \frac {d}{dx}\left [ \frac{f(x)}{g(x)} \right ]= \frac {g(x) \frac {d}{dx}\left [{f(x)} \right ] - f(x) \frac{d}{dx} \left [{g(x)} \right ]}{\left [{g(x)} \right ]^2}.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Nov 01, 2012
Last Modified:
Mar 23, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ALY.846.L.1