<meta http-equiv="refresh" content="1; url=/nojavascript/">
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Math Analysis Go to the latest version.

2.8: The Fundamental Theorem of Algebra

Difficulty Level: At Grade Created by: CK-12

Learning objectives

  • Understand the statement of the theorem and how to apply it to various functions
  • Understand the conjugate root theorem

Complex Roots of Polynomial Functions

A polynomial function with real coefficients does not necessarily have real zeros. You may recall that the quadratic equation f(x)=ax^{2}+bx+c, where a, b, and c are real numbers has real zeros if and only if the discriminant b^{2}-4ac\geq 0. Otherwise, the quadratic equation has complex roots. For example, the zeros of the quadratic equation


can be found by using the quadratic formula ((insert cross reference?)) as follows

x & = \frac{-3 \pm \sqrt{9-16}}{2}\\& = \frac{-3 \pm \sqrt{-7}}{2}\\& = \frac{-3 \pm \sqrt{7}i}{2}

Therefore the zeros are x=-\frac{3}{2}+\frac{\sqrt{7}}{2}i and x=-\frac{3}{2}-\frac{\sqrt{7}}{2}i.

Another example, the polynomial function


can be factored using synthetic division into


Using the quadratic formula on the second term, we find all the zeros to be,


and thus f(x) can be written as

f(x) & = 2x^3 - 5x^2 + 4x -3\\& = (x-3) \left [ x-\left ( -\frac{1}{4}+\frac{\sqrt{7}}{4}i \right ) \right ]\left [ x-\left ( -\frac{1}{4}-\frac{\sqrt{7}}{4}i \right ) \right ]

Written in this form, f(x) is a complex polynomial function written in factored form.

Example 1

Write g(x)=x^{2}+x+1 as a complex polynomial in factored form.


Notice that g(x) has no real roots. You can see this in the graph of g(x), or by looking at the discriminant, b^{2}-4ac=1-4=-3.

<insert graph>

Using the quadratic formula, the roots of g(x) are

x & = \frac{-b \pm \sqrt{b^2-4ac}}{2z}\\& = \frac{-1 \pm \sqrt{-3}}{2}\\& = - \frac{1}{2} + i \frac{\sqrt{3}}{2} \ or \ - \frac{1}{2} - i \frac{\sqrt{3}}{2}

Finally, writing g(x) in factored form,


Fundamental Theorem of Algebra

From the results above, we conclude that all polynomials are “factorable” as products of linear factors. These factors are based on the zeros of the polynomial functions. We present the following important four theorems in the theory of complex zeros of polynomial functions:

The Fundamental Theorem of Algebra

If f(x) is a polynomial of degree n\ge 1, then f(x) has at least one zero in the complex number domain. In other words, there is at least one complex number c such that f(c)=0.

There is no rigorous proof for the fundamental theorem of algebra. Some mathematicians even believe that such proof may not exist. However, the theorem is considered to be one of the most important theorems in mathematics. A corollary of this important theorem is the factorization theorem,

Theorem 2: The Factorization Theorem



where a_{n} \ne 0, and n is a positive integer, then


where the numbers c_{i} are complex numbers.

Theorem 3: The n-Roots Theorem

If f(x) is a polynomial of degree n, where n\ne 0, then f(x) has, at most, n zeros.

Notice that this theorem does not restrict that the zeros must be distinct. In other words, multiplicity of the zeros is allowed. For example, the quadratic equation f(x)=x^{2}+6x+9 has one zero, -3, and we say that the function has -3 as a double zero or one zero with multiplicity k=2. In general, if

f(x)=(x-c)^{k}q(x)\quad\text{and} \quad q(c)\ne0

then c is a zero of the polynomial f and of multiplicity k. For example,


has 2 as one zero with k=3 and -5 as a zero with k=1.

Conjugate Pairs Theorem

Theorem: The Conjugate Root Theorem

If f(z) is a polynomial of degree n, with n\ne0 and with real coefficients, and if f(z_{0})=0, where z_{0}=a+bi, then f(z_{0}^{*})=0. Where z_{0}^{*} is the complex conjugate of z_{0}.

This is a fascinating theorem! It says basically that if a complex number is a zero of a polynomial, then its complex conjugate must also be a zero of the same polynomial. In other words, complex roots (or zeros) exist in conjugate pairs for the same polynomial. For example, the polynomial function


has two zeros: one is the complex number 1+i. By the conjugate root theorem, 1-i is also a zero of f(x)=x^{2}-2x+2. We can easily prove that by multiplication:

\left[x-(1+i)\right]\left[x-(1-i)\right] & = (x-1-i)(x-1+i)\\& = x^2 -x +ix - x +1 - i - ix + i +1\\& = x^2 -2x + 2

Example 2

What is the form of the polynomial f(x) if it has the following numbers as zeros: \frac{-1}{3}, 1-i and 2i?


Since the numbers 2i and 1+i are zeros, then they are roots of f(x)=0. It follows that they must satisfy the conjugate root theorem. Thus -2i and 1-i must also be roots to f(x). Therefore,

f(x)= \left ( x+\frac{1}{3} \right )[x-(1-i)][x-(1+i)][x-(2i)][x-(-2i)]


f(x) = \left ( x+\frac{1}{3} \right )(x-1+i)(x-1-i)(x-2i)(x+2i)

After multiplying we get,


which is a fifth degree polynomial. Notice that the total number of zeros is also 5.

Example 3

What is the multiplicity of the zeros to the polynomial



With the help of the rational zero theorem and the synthetic division, we find that x=3 is a zero of g(x),

& \ 3 \ \big ) \overline{1 \ -6 \ \ 18 \ -54 \ \ \ \ 81\;}\\& \quad \ \ \underline{\downarrow \ \ \ 3 \ -9 \ \ \ \ 27 \ -81}\\& \quad \ \ 1 \ -3 \ \ \ 9 \ -27 \ \ \ \ \ 0


Using synthetic division on the quotient, we find that 3 is again a zero:

& \ 3 \ \big ) \overline{1 \ -3 \ \ 9 \ -27}\\& \quad \ \ \underline{\downarrow \ \ \ 3 \ \ \ 9 \ -27}\\& \quad \ \ 1 \ \ \ \ 0 \ \ \ 9 \ \ \ \ \ 0

or from the n-Root Theorem (Theorem 3), we write our solution as

g(x) & = (x-3)(x-3)(x^2+9)\\& = (x-3)^2(x-3i)(x+3i)

So 3 is a double zero (k=2) and 3i and -3i are each of k=1.


In problems 1-5, find a polynomial function with real coefficients that has the given numbers as its zeros.

  1. 1, 2, i
  2. 2, 2, 1-i
  3. i, i, 0, 2i
  4. 1, 1, \left(1-i\sqrt{3}\right)
  5. 0, 0, 2i
  6. If i-1 is a root of the polynomial f(x)=x^{4}+2x^{3}-4x-4, find all other roots of f.
  7. If -2i is a zero of the polynomial f(x)=x^{4}+x^{3}-2x^{2}+4x-24, find all other zeros of f.

In Problems 8-10, determine whether the given number is a zero of the given polynomial. If so, determine its multiplicity.

  1. f(x)=9x^{4}-12x^{3}+13x^{2}-12x+4, x=\frac{2}{3}
  2. f(x)=x^{4}-4x^{3}+5x^{2}-4x+4, x=2
  3. f(x)=3x^{5}-4x^{4}+2x^{3}-\frac{3}{4}x^{2}+2x+12, x=-\frac{2}{3}


  1. x^{4}-3x^{3}+3x^{2}-3x+2
  2. x^{4}-6x^{3}+14x^{2}-16x+8
  3. x^{7}+6x^{5}+9x^{3}+4x
  4. x^{4}-4x^{3}+9x^{2}-10x+4
  5. x^{4}+4x^{2}
  6. -i-1,\sqrt{2},-\sqrt{2}
  7. 2i,-3,2
  8. Yes; k=3
  9. Yes; k=2
  10. No

Image Attributions



Concept Nodes:


Date Created:

Feb 23, 2012

Last Modified:

Jun 08, 2015
Files can only be attached to the latest version of None


Please wait...
Please wait...
Image Detail
Sizes: Medium | Original

Original text