<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

6.7: Proportions to Find Base b

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated23 minsto complete
%
Progress
Practice Proportions to Find Base b
Practice
Progress
Estimated23 minsto complete
%
Practice Now

Let’s Think About It

Kelsey wants to buy a new necklace for the school dance. She learns that her favorite store is having a one-day sale and has knocked down the price of all its necklaces to $9.95. The necklace Kelsey wants has been reduced by 47%. What is its non-sale price?

In this concept, you will learn to use cross products of proportions to find a base, \begin{align*}b\end{align*}.

Guidance

There are many different ways to figure out a part of a whole, but one way is by using proportions.

Cross products can be used to solve for the base as well as the percent and the amount.

When you see the phrase “Of what number?” you know that you are going to be solving for \begin{align*}b\end{align*}, the base. You can then use the same proportion to solve for \begin{align*}b\end{align*}.

Let’s take a look at an example.

33 is 15% of what number?

Remember that the number following the word “of” is the base. Since there is no number after the word “of”, you need to find the base \begin{align*}(b)\end{align*}. 33 is the amount \begin{align*}(a)\end{align*} and 15 is the percent \begin{align*}(p)\end{align*}.

\begin{align*}\begin{array}{rcl} \frac{a}{b} & = & \frac{p}{100}\\ \frac{33}{b} & = & \frac{15}{100}\\ 15b & = & 33(100)\\ 15b & = & 3,300\\ \frac{15b}{15} & = & \frac{3,300}{15}\\ b & = & 220 \end{array}\end{align*} 

The answer is 33 is 15% of 220.

Let’s look at another example.

6 is 17% of what number. Round your answer to the nearest whole number?

To figure this out, let’s write a proportion.

\begin{align*}\frac{6}{b} = \frac{17}{100}\end{align*}

Next, use cross products to solve for \begin{align*}b\end{align*}.

\begin{align*}\begin{array}{rcl} 17b & = & 6(100)\\ 17b & = & 600\\ b & = & 35.29 \end{array}\end{align*}

The answer is rounded to the nearest whole number, 6 is 17% of 35.

Guided Practice

Six students in Miss Lang’s third period math class got A’s on their math test. This was 24% of the class.

How many students are in Miss Lang’s third period math class?

You can think of this problem as “6 is 24% of what number?” First, let’s set up the proportion.

\begin{align*}\frac{6}{b} = \frac{24}{100}\end{align*}

Next, use cross products to solve for \begin{align*}b\end{align*}.

\begin{align*}\begin{array}{rcl} 24b & = & 6(100)\\ 24b & = & 600\\ b & = & 600 \div 24\\ b & = & 25 \end{array}\end{align*}

The answer is there are 25 students in Miss Lang’s third period math class.

Examples

Example 1

6 is 25% of what number?

First, let’s write a proportion.

\begin{align*}\frac{6}{b} = \frac{25}{100}\end{align*}

Next, use cross products to solve for \begin{align*}b\end{align*}.

\begin{align*}\begin{array}{rcl} 25b & = & 6(100)\\ 25b & = & 600\\ b & = & 24 \end{array}\end{align*}

The answer is 6 is 25% of 24.

Example 2

12 is 8% of what number?

First, let’s write a proportion.

\begin{align*}\frac{12}{b} = \frac{8}{100}\end{align*}

Next, use cross products to solve for \begin{align*}b\end{align*}.

\begin{align*}\begin{array}{rcl} 8b & = & 12(100)\\ 8b & = & 1,200\\ b & = & 150 \end{array}\end{align*}

The answer is that 12 is 8% of 150.

Example 3

22 is 11% of what number?

First, let’s write a proportion.

\begin{align*}\frac{22}{b} = \frac{11}{100}\end{align*}

Next, use cross products to solve for \begin{align*}b\end{align*}.

\begin{align*}\begin{array}{rcl} 11b & = & 22(100)\\ 11b & = & 2,200\\ b & = & 200 \end{array}\end{align*}

The answer is that 22 is 11% of 200.

Follow Up

Remember Kelsey and her new necklace? For one day, the necklace she wants has been reduced to $9.95.

The discount applied is 47%. What is the regular price of the necklace?

First, figure out what you’re trying to find. If the discount is 47%, the sale price is \begin{align*}100\% - 47\%\end{align*} or 53% of the regular price. So you’re trying to find “$9.95 is 53% of what number?”

Now, let’s write a proportion.

\begin{align*}\frac{9.95}{b} = \frac{53}{100}\end{align*}

Next, use cross products to solve for \begin{align*}b\end{align*}.

\begin{align*}\begin{array}{rcl} 53b & = & 9.95(100)\\ 53b & = & 995\\ b & = & \$ 18.77 \end{array}\end{align*}

The answer is the regular price of the necklace is $18.77.

Video Review

https://www.youtube.com/watch?v=wsBhmrmumJo&feature=youtu.be

Explore More

Find each missing base.

  1. 5 is 10% of what number?
  2. 7 is 10% of what number?
  3. 10 is 20% of what number?
  4. 16 is 40% of what number?
  5. 8 is 25% of what number?
  6. 14 is 50% of what number?
  7. 25 is 5% of what number?
  8. 4 is 80% of what number?
  9. 18 is 25% of what number?
  10. 9 is 3% of what number?
  11. 15 is 20% of what number?
  12. 18 is 13% of what number?
  13. 15 is 12.5% of what number?
  14. 18 is 55% of what number?
  15. 22 is 5.5% of what number?

Vocabulary

Percent

Percent

Percent means out of 100. It is a quantity written with a % sign.
Proportion

Proportion

A proportion is an equation that shows two equivalent ratios.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Grades:
Date Created:
Dec 02, 2015
Last Modified:
Mar 23, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.ARI.765.3.L.1