<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# 1.8: Evaluate Variable Expressions with Given Values

Difficulty Level: At Grade Created by: CK-12
Estimated13 minsto complete
%
Progress
Practice Polynomial Expression Evaluation

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated13 minsto complete
%
Estimated13 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

Did you know that you can evaluate a variable expression for a given value? Have you ever been shopping and had to use math in the store? Take a look at this dilemma.

Hanson went shopping and bought cashews and almonds for his Mom. The cashews were $4.99 per pound, and the almonds were$3.50 per pound. Hanson looked at the prices and wrote down the following variable expression.

4.99x+3.50y\begin{align*}4.99x + 3.50y\end{align*}

If Hanson bought four pounds of cashews and four pounds of almonds, can you figure out how much money he spent? Use the information in this Concept to help you to evaluate this variable expression.

### Guidance

Before you can learn how to evaluate a variable expression with a given value, you need to know how to identify a variable expression.

What is a variable expression?

A variable expression is a group of numbers, operations and variables without using an equal sign. A variable is a letter used to represent an unknown quantity. A constant is a number without a variable.

Here is a variable expression.

6a+7\begin{align*}6a+7\end{align*}

In this variable expression, a\begin{align*}a\end{align*} is the variable and 7 is the constant.

Let’s look at evaluating variable expressions when we have been given a value for the variable.

Evaluate the expression 4g+1.5\begin{align*}4g + 1.5\end{align*} for g=8\begin{align*}g = 8\end{align*}.

Step 1: Substitute 8 for the variable “g\begin{align*}g\end{align*}.”

4(8)+1.5\begin{align*}4(8) + 1.5\end{align*}

Step 2: Follow the standard order of operations to solve: parentheses, exponents, multiply, divide, add, and then subtract.

4(8)+1.5 (Multiply)32+1.5 (Add)33.5\begin{align*}& 4(8) + 1.5 \ (\text{Multiply})\\ & 32 + 1.5 \ (\text{Add})\\ & 33.5\end{align*}

Our answer is 33.5

Evaluate the expression 5ab+2a7\begin{align*}5ab + 2a - 7\end{align*}, when a=2\begin{align*}a = 2\end{align*} and b=4\begin{align*}b = 4\end{align*}.

Yes, there are. But don’t let that take you off course. If you simply substitute the given values into the expression and use the order of operations, you will end up with the correct answer.

Step 1: Substitute 2 for the variable “a\begin{align*}a\end{align*}” and 4 for the variable “b\begin{align*}b\end{align*}.”

5ab+2a75(2)(4)+2(2)7\begin{align*}& 5ab + 2a - 7\\ & 5(2)(4) + 2(2) - 7\end{align*}

Step 2: Follow the standard order of operations to solve: parentheses, exponents, multiply, divide, add, and then subtract.

5(2)(4)+2(2)7 (Multiply)10(4)+4740+47 (Add)447 (Subtract)37\begin{align*}& 5(2)(4) + 2(2) - 7 \ (\text{Multiply})\\ & 10(4) + 4 - 7\\ & 40 + 4 - 7 \ (\text{Add})\\ & 44 - 7 \ (\text{Subtract})\\ & 37\end{align*}

The answer is 37.

#### Example A

Evaluate the expression 5a+2b17\begin{align*}5a + 2b - 17\end{align*}, when a=3\begin{align*}a = 3\end{align*} and b=4\begin{align*}b = 4\end{align*}

Solution: 6\begin{align*}6\end{align*}

#### Example B

Evaluate the expression 6xy+2x7\begin{align*}6xy + 2x - 7\end{align*}, when x=4\begin{align*}x=4\end{align*} and y=5\begin{align*}y=5\end{align*}

Solution: 121\begin{align*}121\end{align*}

#### Example C

Evaluate the expression 9x+18y+5\begin{align*}9x + 18y + 5\end{align*}, when x=6\begin{align*}x=-6\end{align*} and y=2\begin{align*}y=2\end{align*}

Solution: 13\begin{align*}-13\end{align*}

Now let's go back to the dilemma from the beginning of the Concept. Here is the variable expression that Hanson wrote.

4.99x+3.50y\begin{align*}4.99x + 3.50y\end{align*}

We know that he bought 4 pounds of cashews and 4 pounds of almonds. Let's substitute those values into the expression for x\begin{align*}x\end{align*} and y\begin{align*}y\end{align*}.

4.99(4)+3.50(4)\begin{align*}4.99(4) + 3.50(4)\end{align*}

Now we can solve for the total cost.

19.96+14.00=\$33.96\begin{align*}19.96 + 14.00 = 33.96\end{align*}

This is our final answer.

### Vocabulary

Variable Expression
a group of numbers, operations and variables without an equal sign.
Variable
a letter used to represent an unknown number
Constant
a number in an expression that does not have a variable.

### Guided Practice

Here is one for you to try on your own.

Evaluate 4x+3y18xy\begin{align*}4x + 3y - 18xy\end{align*}, when x=3,y=4\begin{align*}x=-3,y=4\end{align*}

Solution

First, substitute the given values into the expression for x\begin{align*}x\end{align*} and y\begin{align*}y\end{align*}.

4(3)+3(4)18(3)(4)\begin{align*}4(-3) + 3(4) - 18(-3)(4)\end{align*}

Now we can evaluate the expression using the order of operations.

12+12216\begin{align*}-12 + 12 - -216\end{align*}

0+216=216\begin{align*}0 + 216 = 216\end{align*}

This is our final answer.

### Practice

Directions: Evaluate each variable expression using the given values for each variable.

1. 6a+7\begin{align*}6a+7\end{align*} when a\begin{align*}a\end{align*} is 8
2. 9xy\begin{align*}9x-y\end{align*} when x\begin{align*}x\end{align*} is 2 and y\begin{align*}y\end{align*} is 4.
3. 5a+b2\begin{align*}5a+ b^2\end{align*} when a\begin{align*}a\end{align*} is 12 and b\begin{align*}b\end{align*} is 4.
4. 8x+2\begin{align*}\frac{8}{x}+2\end{align*} when x\begin{align*}x\end{align*} is 4
5. 6x+2.5\begin{align*}6x+2.5\end{align*} when x\begin{align*}x\end{align*} is 2.
6. y2+4\begin{align*}y^2+4\end{align*} when y\begin{align*}y\end{align*} is 9
7. 7x+2y\begin{align*}7x+2y\end{align*} when x\begin{align*}x\end{align*} is 3 and y\begin{align*}y\end{align*} is 5
8. 9xy+x2\begin{align*}9xy+ x^2\end{align*} when x\begin{align*}x\end{align*} is 4 and y\begin{align*}y\end{align*} is 2
9. 3ab+b3\begin{align*}3ab+ b^3\end{align*} when a\begin{align*}a\end{align*} is 9 and b\begin{align*}b\end{align*} is 2
10. 16xy2+14\begin{align*}16xy^2+ 14\end{align*} when x\begin{align*}x\end{align*} is 3 and y\begin{align*}y\end{align*} is 4

11. 6xy+4x\begin{align*}6xy + 4x\end{align*} when \begin{align*}x\end{align*} is 2 and \begin{align*}y\end{align*} is 7

12. \begin{align*}16y + 8xy\end{align*} when \begin{align*}x\end{align*} is 3 and \begin{align*}y\end{align*} is 4

13. \begin{align*}3x^2 + 24y\end{align*} when \begin{align*}x\end{align*} is 3 and \begin{align*}y\end{align*} is 4

14. \begin{align*}-xy + 8xy\end{align*} when \begin{align*}x\end{align*} is 3 and \begin{align*}y\end{align*} is 4

15. \begin{align*}22x + 4y - 3xy\end{align*} when \begin{align*}x\end{align*} is 3 and \begin{align*}y\end{align*} is 4

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

### Vocabulary Language: English

TermDefinition
constant A constant is a value that does not change. In Algebra, this is a number such as 3, 12, 342, etc., as opposed to a variable such as x, y or a.
Exponent Exponents are used to describe the number of times that a term is multiplied by itself.
Variable A variable is a symbol used to represent an unknown or changing quantity. The most common variables are a, b, x, y, m, and n.
Variable Expression A variable expression is a mathematical phrase that contains at least one variable or unknown quantity.

### Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Authors:
Tags:
Subjects:

## Concept Nodes:

Grades:
Date Created:
Dec 19, 2012
Last Modified:
Sep 14, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original

MAT.ALG.134.L.2