<meta http-equiv="refresh" content="1; url=/nojavascript/"> Evaluate Numerical and Variable Expressions Involving Powers | CK-12 Foundation
You are reading an older version of this FlexBook® textbook: CK-12 Middle School Math Concepts - Grade 8 Go to the latest version.

# 1.6: Evaluate Numerical and Variable Expressions Involving Powers

Difficulty Level: Basic Created by: CK-12
0  0  0
%
Best Score
Practice Algebra Expressions with Exponents
Best Score
%

Do you know how to evaluate a numerical expression when it has powers in it? Casey is having a difficult time doing exactly that. When Casey arrived home from school he looked at this homework. He immediately noticed this problem.

$5^4 + -2^4 + 12$

Casey isn't sure how to evaluate this expression. Do you know how to do it? This Concept will show you how to evaluate numerical expressions involving powers. Then you will be able to help Casey at the end of the Concept.

### Guidance

Did you know that you can evaluate numerical and variable expressions involving powers? First, let's identify a numerical and a variable expression.

A numerical expression is a group of numbers and operations that represent a quantity, there isn’t an equal sign.

A variable expression is a group of numbers, operations and variables that represents a quantity, there isn’t an equal sign.

We can combine the order of operations, numerical expressions and variable expressions together with powers.

A power is a number with an exponent and a base . An exponent is a little number that shows the number of times a base is multiplied by itself. The base is the regular sized number that is being worked with.

Take a minute to write these definitions in your notebook.

Now let's apply this information.

$4^2 = 16$

What happened here?

We can break down this problem to better understand powers and exponents. In the power $4^2$ or four-squared, four is the base and two is the exponent. $4^2$ means four multiplied two times or $4 \times 4$ . Therefore, $4^2$ is sixteen.

Let's go back a step and evaluate an expression with a power in it. Take a look.

Evaluate $6^3$

First, we have to think about what this means. It means that we take the base, 6 and multiply it by itself three times.

$& 6 \times 6 \times 6\\& 36 \times 6 \\& 216$

Here is another one with a negative number in it.

Evaluate $-8^2$

To work on this one, we have to work on remembering integer rules. Think back remember that we multiply a negative times a negative to get a positive.

$-8 \cdot -8 = 64$

This is called evaluating a power.

Let’s look at evaluating powers within expressions.

Simplify the expression $6^4 + 2^5 + 12$ .

Step 1: Simplify $6^4$ .

$6^4 = 6 \times 6 \times 6 \times 6 = 1,296$

Step 2: Simplify $2^5$ .

$2^5 = 2 \times 2 \times 2 \times 2 \times 2= 32$

$1,296 + 32 + 12 = 1,340$

We can also evaluate variable expressions by substituting given values into the expressions.

Evaluate the expression $4a^2$ when $a = 3$ .

Step 1: Substitute 3 for the variable “ $a$ .”

$4(3)^2$

Step 2: Simplify the powers.

$& 4(3)^2\\& 4(3 \cdot 3)\\& 4(9)$

Step 3: Multiply to solve.

$& 4(9)\\& 36$

#### Example A

$6^3 + 5^2 + 25$

Solution: $266$

#### Example B

$16(12^3)$

Solution: $27,648$

#### Example C

$6^2 + 5^3 + 15 - 11$

Solution: $165$

Now let's go back to the dilemma at the beginning of the Concept. Here is the problem that was puzzling to Casey.

$5^4 + -2^4 + 12$

First, Casey will need to evaluate the powers.

$5^4 = (5)(5)(5)(5) = 625$

$-2^4 = (-2)(-2)(-2)(-2) = 16$

Now we can substitute these values back into the expression.

$625 + 16 + 12 = 653$

This is the answer to Casey's problem.

### Vocabulary

Numerical Expression
a group of numbers and operations used to represent a quantity without an equals sign.
Variable Expression
a group of numbers, operations and variables used to represent a quantity without an equals sign.
Powers
the value of a base and an exponent.
Base
the regular sized number that the exponent works upon.
Exponent
the little number that tells you how many times to multiply the base by itself.

### Guided Practice

Here is one for you to try on your own.

Evaluate the expression $5b^4 + 17$ . Let $b=5$ .

Solution

Step 1: Substitute 5 for “ $b$ .”

$5(5)^4 + 17$

Step 2: Simplify the powers.

$& 5(5 \cdot 5 \cdot 5 \cdot 5) + 17\\& 5(625) + 17$

Step 3: Multiply then add to solve.

$& 5(625) + 17\\& 3,125 + 17 = 3,142$

### Practice

Directions: Evaluate each power.

1. $3^3$
2. $4^2$
3. $-2^4$
4. $-8^2$
5. $5^3$
6. $2^6$
7. $-9^2$
8. $-2^6$

Directions: Evaluate each numerical expression.

1. $6^2 + 22$
2. $-3^3 + 18$
3. $2^3 + 16 - 4$
4. $-5^2 - 19$
5. $-7^2 + 52 - 2$
6. $18 + 9^2 - 3$
7. $22 - 3^3 + 7$

Directions: Evaluate each variable expression using the given values.

1. $6a + 4^2 - 2$ , when $a = 3$
2. $a^3 + 14$ , when $a = 6$
3. $2a^2 - 16$ , when $a = 4$
4. $5b^3 + 12$ , when $b = -2$
5. $2x^2 + 52$ , when $x = 4$

Basic

Dec 19, 2012

Aug 21, 2014