Skip Navigation

2.29: Atomic Nucleus

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated2 minsto complete
Practice Atomic Nucleus
This indicates how strong in your memory this concept is
Estimated2 minsto complete
Estimated2 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Many people enjoy putting jigsaw puzzles together.  As the different pieces go together, the picture begins to become clearer.  When the puzzle is completed, you see that what had been a confused collection of individual components that made little or no sense by themselves fit together to give a clear picture.

Science works the same way as a jigsaw puzzle.  Different researchers make individual discoveries that answer a specific question or questions.  When enough data are gathered, we get a better understanding of a process or a structure.  The experiments of Crooke, Millikan, Rutherford, and many others gave us pieces of the puzzle that is the atomic nucleus.

Different Models of the Nucleus

After the electron and proton were discovered, people began to try to build a picture of the atom.  The Bohr model had electrons mixed in with a positive core of some sort that provided electrical neutrality.  Rutherford showed that this model was incomplete.  His picture of the atom involved a small solid core that alpha particles could zoom past with very few collisions.  So the picture of the atom became a little clearer – electrons surrounded a very small core nucleus.  The discovery of the neutron helped fill out the picture even more.  We now have protons and neutrons in a concentrated center of the atom with electrons surrounding the nucleus.

One problem still existed.  We have a number of positively charged protons in the nucleus.  Why don’t they push each other apart? Physicists postulate a strong nuclear force that acts at very short distances. At these distances the attraction between protons is greater than the force causing the positive charges to push each other away. Neutrons are also involved in this process somehow.  So the strong force holds protons together, it holds neutrons together, and it causes protons and neutrons to be attracted to one another.

Video on atomic nucleus:



  • Rutherford proposed a model of the atomic nucleus which had a solid core
  • There is no good explanation for why the nuclear particles stay together.


Use the link below to answer the following questions:


  1. What is the radius of the nucleus as compared to the radius of the atom?
  2. What is the density of the nucleus?


  1. What was our first model of the atom?
  2. How did Rutherford change our thinking about atomic structure?
  3. What is our current picture of the atom?
  4. Why is the presence of positively charged protons a problem with current models of the atom?
  5. How do we explain why the nucleus does not fall apart?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More


nucleus Tiny region in the center of an atom that contains protons and neutrons and makes up almost all of the atom’s mass.

Image Attributions

Show Hide Details
Difficulty Level:
At Grade
7 , 8
Date Created:
Oct 31, 2012
Last Modified:
Sep 13, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original