<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

2.27: Amontons's Law

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated2 minsto complete
Practice Amontons' Law
This indicates how strong in your memory this concept is
Estimated2 minsto complete
Estimated2 minsto complete
Practice Now
This indicates how strong in your memory this concept is
Turn In

Lawrence checked the air pressure in one of his tires before driving to school on a cold winter day. The tire pressure gauge registered 32 pounds of force per square inch. After making the 10-mile trip to school, Lawrence checked the air pressure again. This time the gauge registered 34 pounds of force per square inch. Lawrence didn’t add any air to the tire in between the two measurements, so why did air pressure in the tire increase?

Keep on Rolling

There was no additional air in the tire the second time Lawrence checked the air pressure, but something did change between the two measurements. The tires had rolled over 10 miles of road on the trip to school. Any time one surface moves over another, it causes friction. Friction is a force that opposes the motion of two surfaces that are touching, and friction between two surfaces always generates heat. Quickly rub your hands together and you’ll feel the heat generated by the friction between them. As the tires moved over the road, friction between the tires and road generated heat. In short, the tires got warmer and so did the air inside them.

It’s the Law!

The space inside a car tire is more-or-less fixed, so it has a constant volume. What happens when the volume of air is constant and its temperature increases? Lawrence found out the answer to that question when he measured the air pressure in his tire. Increasing the temperature of a gas such as air, while holding its volume constant, increases the pressure of the gas. This relationship between temperature and pressure of a gas is called Amontons' law. It was first proposed by a French scientist named Guillaume Amontons in the late 1600s. Amontons’ gas law is just one of three commonly known gas laws. The other two are Boyle’s law and Charles’ law.

Q: How does Amontons' gas law explain the difference in air pressure in Lawrence’s tire?

A: The tire—and the air inside it—got warmer because of friction with the road. The volume of air inside the tire was more-or-less constant, so the pressure of the air increased when it got warmer.

Particle Pressure

Why does the pressure of a gas increase as it gets warmer? Particles of a gas are constantly moving and bumping into things. The force of the collisions is measured by pressure. Pressure is the amount of force exerted on a given area, such as pounds of force per square inch. When gas particles heat up and gain energy, they move faster. This causes more collisions and greater pressure. Therefore, heating particles of gas in a closed space causes the pressure of the gas to increase.


  • According to Amontons’ law, increasing the temperature of a gas while holding its volume constant increases the pressure of the gas.
  • When gas particles heat up and gain energy, they move faster. This increases their collisions with each other and their container, causing greater pressure.


  1. State Amontons’s law.
  2. Assume you have a sealed jug that contains only air. If you heat the air in the jug, it will have a higher temperature. What other property of the air will also change?
  3. A father does a classic experiment for his son, which is pictured in the Figure below. First, he put a small piece of paper in a glass bottle and lit the paper with a match. He immediately placed a shelled, hard-boiled egg over the bottle opening. The paper soon burned out, and after a few seconds, the egg slipped inside the bottle. Apply Amontons’ law to explain why.

Hard-boiled egg being sucked into bottle as result of Amonton's Law

Explore More

Watch the following simple demonstration, and then answer the questions below.

  1. In this demonstration, when is the pressure of air inside the can greatest? Why?
  2. How is the volume of air inside the can kept constant after the can is heated?
  3. How can you tell that air pressure inside the can is lower after the can cools?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Difficulty Level:
At Grade
7 , 8
Date Created:
Aug 03, 2016
Last Modified:
Sep 13, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original