<meta http-equiv="refresh" content="1; url=/nojavascript/"> Atomic Physics | CK-12 Foundation
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Physics - Intermediate Go to the latest version.

Chapter 24: Atomic Physics

Created by: CK-12

Credit: Beltsville Agricultural Research Center
Source: http://commons.wikimedia.org/wiki/File:Snow_crystals.png
License: CC BY-NC 3.0

A scanning electron microscope image of snow crystals, with computer-generated colors. [Figure1]

A scanning electron microscope is a tool that uses electrons to make very sharp images with magnification of up to 500,000x.  Our knowledge of electrons comes from early study of the atom that lead to greater understanding not only of electrons and atomic structuer, but of the nature of all particles.  This chapter covers modeling the atom and atomic spectra, the Bohr atom, and the Uncertainty Principle. 

Chapter Outline

Chapter Summary

1. The Balmer series is an empirical formula which gives the reciprocal of the wavelength \lambda for each line in the hydrogen spectrum

\frac{1}{\lambda}=R\left(\frac{1}{2^2}-\frac{1}{n^2}\right), n=3,4, \ldots,

The letter R is known as the Rydberg constant of value

R=1.097 \times 10^7 \ m^{-1}

The integer n is associated with each emission line.

2. Bohr quantized assumptions led to a more general statement of the Balmer series

\frac{1}{\lambda}=R \left(\frac{1}{n^2_l}-\frac{1}{n^2_h}\right)

where n_l is the lower state and n_h is the higher state.

3. Bohr’s assumptions for hydrogen atom are:

a. The allowed radii of the atom

r_n=n^2 r_1, n=1, 2, \ldots

where r_1 is the smallest orbital radius of the hydrogen atom, commonly referred to as the Bohr radius.

b. The allowable energy levels, or stationary states of the atom

E=\frac{E_1}{n^2}, n=1, 2, \ldots

c. The difference between allowable energy levels can be expressed as

hf=E_h-E_l

where E_h is a higher energy state of the electron and E_l is a lower energy state of the electron.

4. The square of the amplitude of the matter wave in Schrodinger’s equation assigns probabilities for the location of the electron.

5. The Heisenberg uncertainty principle is

\Delta x \Delta p \ge \frac{h}{2 \pi}

where \Delta x is the uncertainty in position of the particle and \Delta p is the uncertainty in momentum of the particle.

Image Attributions

  1. [1]^ Credit: Beltsville Agricultural Research Center; Source: http://commons.wikimedia.org/wiki/File:Snow_crystals.png; License: CC BY-NC 3.0

Description

Difficulty Level:

At Grade

Authors:

Editors:

Subjects:

Date Created:

Jun 27, 2013

Last Modified:

May 22, 2014
You can only attach files to None which belong to you
If you would like to associate files with this None, please make a copy first.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 

Original text