<meta http-equiv="refresh" content="1; url=/nojavascript/"> Newton's Universal Law of Gravity | CK-12 Foundation
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: CK-12 Physics - Intermediate Go to the latest version.

Chapter 9: Newton's Universal Law of Gravity

Created by: CK-12

Credit: Courtesy of NASA
Source: http://commons.wikimedia.org/wiki/File:Solar_system.jpg
License: CC BY-NC 3.0

We know gravity as the force pulling downwards on everyday objects.  The principles of gravity, however, apply on a much larger scale, and were discovered from study of the solar system.  This chapter will cover Kepler's Laws of Planetary Motion, Newton's Universal Law of Gravity, and the mechanics of circular orbits.

Chapter Outline

Chapter Summary

  1. Kepler’s Three Laws of Planetary Motion are:
    1. The orbital paths of the planets about the sun are ellipses with the sun at one focus.
    2. If an imaginary line is drawn from the sun to a planet as the planet orbits the sun, this line will sweep out equal areas in equal times. (A planet moves faster when it is closer to the sun and slower when it is farther away from the sun.)
    3. The square of the time T^2 for the orbital period of a planet about the sun is proportional to the cube of the average distance r^3 between the sun and the planet. That is, T^2 \propto r^3 or T^2 = kr^3 where k equals \frac{4\pi^2}{GM} and M is the mass of the central body \left(T^2 = \frac{4\pi^2}{Gm} r^3\right). If T is expressed in years and r in astronomical units than k = 1 and T^2 = r^3
  2. The Universal Law of Gravity The force F between two objects is directly proportional to the product of their masses, m_1m_2, and inversely proportional to the square of the distance, r^2between their centers:

    F = \frac{Gm_1m_2}{r^2}

    where G is the universal gravitational constant equal to G = 6.67 \times 10^{-11} \frac{N*m^2}{kg^2}.

  3. The gravitational acceleration near a massive body of mass m is g = \frac{Gm}{r^2} where m is the mass that creates the gravitational acceleration and ris the distance from the center of the planet to a point outside the planet.
  4. The electrostatic force between two charged bodies is F = \frac{kq_1q_2}{r^2}.

Image Attributions

  1. [1]^ Credit: Courtesy of NASA; Source: http://commons.wikimedia.org/wiki/File:Solar_system.jpg; License: CC BY-NC 3.0

Description

Difficulty Level:

At Grade

Authors:

Editors:

Subjects:

Date Created:

Jun 27, 2013

Last Modified:

May 22, 2014
You can only attach files to None which belong to you
If you would like to associate files with this None, please make a copy first.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 

Original text