<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Chapter 3: Trigonometric Identities and Equations

Difficulty Level: At Grade Created by: CK-12

Chapter Outline

Chapter Summary

Chapter Summary

Here are the identities studied in this chapter:

Quotient & Reciprocal Identities

\begin{align*}\tan \theta &= \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta}\\ \csc \theta &= \frac{1}{\sin \theta} \ \sec \theta = \frac{1}{\cos \theta} \ \cot \theta = \frac{1}{\tan \theta} \end{align*}

Pythagorean Identities

\begin{align*}\sin^2 \theta + \cos^2 \theta = 1 && 1 + \cot^2 \theta = \csc^2 \theta && \tan^2 \theta + 1 = \sec^2 \theta \end{align*}

Even & Odd Identities

\begin{align*}\sin (-x) &= -\sin x && \cos (-x) = \cos x && \tan (-x) = -\tan x\\ \csc (-x) & = -\csc x && \sec (-x) = \sec x && \cot (-x) = -\cot x\end{align*}

Co-Function Identities

\begin{align*}& \sin \left ( \frac{\pi}{2} - \theta \right ) = \cos \theta && \cos \left ( \frac{\pi}{2} - \theta \right ) = \sin \theta && \tan \left ( \frac{\pi}{2} - \theta \right ) = \cot \theta\\ & \csc \left ( \frac{\pi}{2} - \theta \right )= \sec \theta && \sec \left ( \frac{\pi}{2} - \theta \right ) = \csc \theta && \cot \left ( \frac{\pi}{2} - \theta \right ) = \tan \theta\end{align*}

Sum and Difference Identities

\begin{align*}\cos(\alpha + \beta) & = \cos \alpha \cos \beta - \sin \alpha \sin \beta && \cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \\ \sin(\alpha + \beta) & = \sin \alpha \cos \beta + \cos \alpha \sin \beta && \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta \\ \tan (\alpha + \beta) & = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} && \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}\end{align*}

Double Angle Identities

\begin{align*}\cos(2 \alpha) & = \cos^2 \alpha - \sin^2 \alpha = 2 \cos^2 \alpha - 1 = 1 - 2 \sin^2 \alpha \\ \sin(2 \alpha) & = 2 \sin \alpha \cos \beta \\ \tan (2 \alpha) & = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}\end{align*}

Half Angle Identities

\begin{align*}\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}} && \sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}} && \tan \frac{\alpha }{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}\end{align*}

Product to Sum & Sum to Product Identities

\begin{align*}\sin a + \sin b & = 2 \sin \frac{a+b}{2} \cos \frac{a-b}{2} && \sin a \sin b = \frac{1}{2} [\cos (a-b) - \cos (a+b)] \\ \sin a - \sin b& = 2 \sin \frac{a-b}{2} \cos \frac{a+b}{2} && \cos a \cos b = \frac{1}{2} [\cos (a-b) + \cos (a+b)] \\ \cos a + \cos b & = 2 \cos \frac{a+b}{2} \cos \frac{a-b}{2} && \sin a \cos b = \frac{1}{2} [\sin (a+b) + \sin (a-b)] \\ \cos a - \cos b & = 2 - 2 \sin \frac{a+b}{2} \sin \frac{a-b}{2} && \cos a \sin b = \frac{1}{2} [\sin (a+b) - \sin (a-b)] \end{align*}

Linear Combination Formula

\begin{align*}A \cos x + B \sin x = C \cos (x - D)\end{align*}, where \begin{align*}C = \sqrt{A^2 + B^2}, \cos D = \frac{A}{C}\end{align*} and \begin{align*}\sin D = \frac{B}{C}\end{align*}

Review Questions

  1. Find the sine, cosine, and tangent of an angle with terminal side on \begin{align*}(-8, 15)\end{align*}.
  2. If \begin{align*}\sin a = \frac{\sqrt{5}}{3}\end{align*} and \begin{align*}\tan a < 0\end{align*}, find \begin{align*}\sec a\end{align*}.
  3. Simplify: \begin{align*}\frac{\cos^4 x - \sin^4 x}{\cos^2 x - \sin^2 x}\end{align*}.
  4. Verify the identity: \begin{align*}\frac{1 + \sin x}{\cos x \sin x} = \sec x (\csc x + 1)\end{align*}

For problems 5-8, find all the solutions in the interval \begin{align*}[0, 2\pi)\end{align*}.

  1. \begin{align*}\sec \left (x + \frac{\pi}{2} \right ) + 2 = 0\end{align*}
  2. \begin{align*}8 \sin \left (\frac{x}{2} \right ) - 8 = 0\end{align*}
  3. \begin{align*}2 \sin^2 x + \sin 2x =0\end{align*}
  4. \begin{align*}3 \tan^2 2x = 1\end{align*}
  5. Solve the trigonometric equation \begin{align*}1 - \sin x = \sqrt{3} \sin x\end{align*} over the interval \begin{align*}[0, \pi]\end{align*}.
  6. Solve the trigonometric equation \begin{align*}2 \cos 3x - 1 = 0\end{align*} over the interval \begin{align*}[0, 2\pi]\end{align*}.
  7. Solve the trigonometric equation \begin{align*}2 \sec^2 x - \tan^4 x = 3\end{align*} for all real values of \begin{align*}x\end{align*}.

Find the exact value of:

  1. \begin{align*}\cos 157.5^\circ\end{align*}
  2. \begin{align*}\sin \frac{13 \pi}{12}\end{align*}
  3. Write as a product: \begin{align*}4(\cos 5x + \cos 9x)\end{align*}
  4. Simplify: \begin{align*}\cos(x - y) \cos y - \sin(x - y) \sin y\end{align*}
  5. Simplify: \begin{align*}\sin \left (\frac{4 \pi}{3} - x \right ) + \cos \left (x + \frac{5 \pi}{6} \right )\end{align*}
  6. Derive a formula for \begin{align*}\sin 6x\end{align*}.
  7. If you solve \begin{align*}\cos 2x = 2 \cos^2x - 1\end{align*} for \begin{align*}\cos^2 x\end{align*}, you would get \begin{align*}\cos^2 x = \frac{1}{2} (\cos 2x + 1)\end{align*}. This new formula is used to reduce powers of cosine by substituting in the right part of the equation for \begin{align*}\cos^2 x\end{align*}. Try writing \begin{align*}\cos^4 x\end{align*} in terms of the first power of cosine.
  8. If you solve \begin{align*}\cos 2x = 1 - 2 \sin^2 x\end{align*} for \begin{align*}\sin^2x\end{align*}, you would get \begin{align*}\sin^2 x = \frac{1}{2} (1 - \cos 2x)\end{align*}. Similar to the new formula above, this one is used to reduce powers of sine. Try writing \begin{align*}\sin^4x\end{align*} in terms of the first power of cosine.
  9. Rewrite in terms of the first power of cosine:
    1. \begin{align*}\sin^2x \cos^2 2x\end{align*}
    2. \begin{align*}\tan^4 2x\end{align*}

Texas Instruments Resources

In the CK-12 Texas Instruments Trigonometry FlexBook® resource, there are graphing calculator activities designed to supplement the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9701.

Image Attributions

Show Hide Details
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the FlexBook® textbook. Please Customize the FlexBook® textbook.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
Here