# 1.15: Angles of Rotation in Standard Positions

**At Grade**Created by: CK-12

**Practice**Angles of Rotation in Standard Positions

While playing a game with friends, you are using a spinner. You know that the best number to land on is

Can you determine how to represent the angle of the spinner if it lands on the

### Watch This

James Sousa: Angles in Standard Position

### Guidance

Consider our game that is played with a spinner. When you spin the spinner, how far has it gone? You can answer this question in several ways. You could say something like “the spinner spun around 3 times.” This means that the spinner made 3 complete rotations, and then landed back where it started.

We can also measure the rotation in degrees. In the previous lesson we worked with angles in triangles, measured in degrees. You may recall from geometry that a full rotation is 360 degrees, usually written as **standard position**.

The initial side of an angle in standard position is always on the positive **counterclockwise** direction. This means that if we rotate **clockwise**, we will generate a negative angle. Below are several examples of angles in standard position.

The 90 degree angle is one of four **quadrantal** angles. A quadrantal angle is one whose terminal side lies on an axis. Along with

These angles are referred to as quadrantal because each angle defines a quadrant. Notice that without the arrow indicating the rotation,

#### Example A

Identify what the angle is in this graph:

**Solution:**

The angle drawn out is

#### Example B

Identify what the angle is in this graph:

**Solution:**

The angle drawn out is

#### Example C

Identify what the angle is in this graph:

**Solution:**

The angle drawn out is

### Vocabulary

**Standard Position:** A ** standard position** is the usual method of drawing an angle, where the measurement begins at the positive 'x' axis and is drawn counter-clockwise.

**Quadrantal Angle:** A ** quadrantal angle** is an angle whose terminal side lies along either the positive or negative 'x' axis or the positive or negative 'y' axis.

### Guided Practice

1. Identify what the angle is in this graph, using negative angles:

2. Identify what the angle is in this graph, using negative angles:

3. Identify what the angle is in this graph, using negative angles:

**Solutions:**

1. The angle drawn out is

2. The angle drawn out is

3. The angle drawn out is

### Concept Problem Solution

Since you know that the angle between the horizontal and vertical directions is

### Practice

- Draw an angle of
90∘ . - Draw an angle of
45∘ . - Draw an angle of
−135∘ . - Draw an angle of
−45∘ . - Draw an angle of
−270∘ . - Draw an angle of
315∘ .

For each diagram, identify the angle. Write the angle using positive degrees.

For each diagram, identify the angle. Write the angle using negative degrees.

- Explain how to convert between angles that use positive degrees and angles that use negative degrees.
- At what angle is the 7 on a standard 12-hour clock? Use positive degrees.
- At what angle is the 2 on a standard 12-hour clock? Use positive degrees.

### Notes/Highlights Having trouble? Report an issue.

Color | Highlighted Text | Notes | |
---|---|---|---|

Please Sign In to create your own Highlights / Notes | |||

Show More |

Quadrantal Angle

A quadrantal angle is an angle that has its terminal side on one of the four lines of axis: positive , negative , positive or negative .Standard Position

The standard position of an angle measures an angle starting from the positive x-axis and going counter-clockwise. It is the typical method for drawing and measuring an angle.### Image Attributions

Here you'll learn how to express angles of rotation.