<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

1.19: Trigonometric Functions of Negative Angles

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated13 minsto complete
%
Progress
Practice Trigonometric Functions of Negative Angles
Practice
Progress
Estimated13 minsto complete
%
Practice Now

While practicing for the track team, you regularly stop to consider the values of trig functions for the angle you've covered as you run around the circular track at your school. Today, however, is different. To keep things more interesting, your coach has decided to have you and your teammates run the opposite of the usual direction on the track. From your studies at school, you know that this is the equivalent of a "negative angle".

You have run 45 around the track, and want to fine the value of the cosine function for this angle. Is it still possible to find the values of trig functions for these new types of angles?

At the completion of this Concept, you'll be able to calculate the values of trig functions for negative angles, and find the value of cosine for the 45 you have traveled.

Watch This

Coterminal and Negative Angles

Guidance

Recall that graphing a negative angle means rotating clockwise. The graph below shows 30.

Notice that this angle is coterminal with 330. So the ordered pair is (32,12). We can use this ordered pair to find the values of any of the trig functions of 30. For example, cos(30)=x=32.

In general, if a negative angle has a reference angle of 30, 45, or 60, or if it is a quadrantal angle, we can find its ordered pair, and so we can determine the values of any of the trig functions of the angle.

Example A

Find the value of the expression: sin(45)

Solution:

sin(45)=22

45 is in the 4th quadrant, and has a reference angle of 45. That is, this angle is coterminal with 315. Therefore the ordered pair is (22,22) and the sine value is 22.

Example B

Find the value of the expression: sec(300)

Solution:

sec(300)=2

The angle 300 is in the 1st quadrant and has a reference angle of 60. That is, this angle is coterminal with 60. Therefore the ordered pair is (12,32) and the secant value is 1x=112=2.

Example C

Find the value of the expression: cos(90)

Solution:

cos(90)=0

The angle 90 is coterminal with 270. Therefore the ordered pair is (0, -1) and the cosine value is 0.

We can also use our knowledge of reference angles and ordered pairs to find the values of trig functions of angles with measure greater than 360 degrees.

Vocabulary

Negative Angle: A negative angle is an angle measured by rotating clockwise (instead of counter-clockwise) from the positive 'x' axis.

Guided Practice

1. Find the value of the expression: cos180

2. Find the value of the expression: sin90

3. Find the value of the expression: tan270

Solutions:

1. The angle 180 is coterminal with 180. Therefore the ordered pair of points is (-1, 0). The cosine is the "x" coordinate, so here it is -1.

2. The angle 90 is coterminal with 270. Therefore the ordered pair of points is (0, -1). The sine is the "y" coordinte, so here it is -1.

3. The angle 270 is coterminal with 90. Therefore the ordered pair of points is (0, 1). The tangent is the "y" coordinate divided by the "x" coordinate. Since the "x" coordinate is 0, the tangent is undefined.

Concept Problem Solution

What you want to find is the value of the expression: cos(45)

Solution:

cos(45)=22

45 is in the 4th quadrant, and has a reference angle of 45. That is, this angle is coterminal with 315. Therefore the ordered pair is (22,22) and the cosine value is 22.

Practice

Calculate each value.

  1. sin120
  2. cos120
  3. tan120
  4. \begin{align*}\csc -120^\circ\end{align*}
  5. \begin{align*}\sec -120^\circ\end{align*}
  6. \begin{align*}\cot -120^\circ\end{align*}
  7. \begin{align*}\csc -45^\circ\end{align*}
  8. \begin{align*}\sec -45^\circ\end{align*}
  9. \begin{align*}\tan -45^\circ\end{align*}
  10. \begin{align*}\cos -135^\circ\end{align*}
  11. \begin{align*}\csc -135^\circ\end{align*}
  12. \begin{align*}\sec -135^\circ\end{align*}
  13. \begin{align*}\tan -210^\circ\end{align*}
  14. \begin{align*}\sin -270^\circ\end{align*}
  15. \begin{align*}\cot -90^\circ\end{align*}

Vocabulary

Negative Angle

Negative Angle

A negative angle is an angle measured by rotating clockwise (instead of counterclockwise) from the positive x axis.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Subjects:
Search Keywords:
Grades:
Date Created:
Sep 26, 2012
Last Modified:
Mar 23, 2016
Files can only be attached to the latest version of Modality
Reviews
100 % of people thought this content was helpful.
0
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.TRG.174.L.1

Original text