<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

1.21: Reciprocal Identities

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated3 minsto complete
%
Progress
Practice Reciprocal Identities
Practice
Progress
Estimated3 minsto complete
%
Practice Now
Turn In

You are already familiar with the trig identities of sine, cosine, and tangent. As you know, any fraction also has an inverse, which is found by reversing the positions of the numerator and denominator.

Can you list what the ratios would be for the three trig functions (sine, cosine, and tangent) with the numerators and denominators reversed?

At the end of this Concept, you'll be able to list these ratios, as well as know what they are called.

Watch This

The first portion of this video will help you understand reciprocal functions.

James Sousa: The Reciprocal, Quotient, and Pythagorean Identities

Guidance

A reciprocal of a fraction ab is the fraction ba. That is, we find the reciprocal of a fraction by interchanging the numerator and the denominator, or flipping the fraction. The six trig functions can be grouped in pairs as reciprocals.

First, consider the definition of the sine function for angles of rotation: sinθ=yr. Now consider the cosecant function: cscθ=ry. In the unit circle, these values are sinθ=y1=y and cscθ=1y. These two functions, by definition, are reciprocals. Therefore the sine value of an angle is always the reciprocal of the cosecant value, and vice versa. For example, if sinθ=12, then cscθ=21=2.

Analogously, the cosine function and the secant function are reciprocals, and the tangent and cotangent function are reciprocals:

secθ=1cosθcotθ=1tanθororcosθ=1secθtanθ=1cotθ

Example A

Find the value of the expression using a reciprocal identity.

cosθ=.3,secθ=?

Solution: secθ=103

These functions are reciprocals, so if cosθ=.3, then secθ=1.3. It is easier to find the reciprocal if we express the values as fractions: cosθ=.3=310secθ=103.

Example B

Find the value of the expression using a reciprocal identity.

cotθ=43,tanθ=?

Solution: These functions are reciprocals, and the reciprocal of 43 is 34.

We can also use the reciprocal relationships to determine the domain and range of functions.

Example C

Find the value of the expression using a reciprocal identity.

sinθ=12,cscθ=?

Solution: These functions are reciprocals, and the reciprocal of 12 is 2.

Vocabulary

Domain: The domain of a function is the set of 'x' values for which the function is defined.

Range: The range of a function is the set of 'y' values for which the function is defined.

Reciprocal Trig Function: A reciprocal trig function is a relationship that is the reciprocal of a typical trig function. For example, since sinx=oppositehypotenuse, the reciprocal function is cscx=hypotenuseopposite

Guided Practice

1. State the reciprocal function of cosecant.

2. Find the value of the expression using a reciprocal identity.

secθ=2π,cosθ=?

3. Find the value of the expression using a reciprocal identity.

cscθ=4,cosθ=?

Solutions:

1. The reciprocal function of cosecant is sine.

2. These functions are reciprocals, and the reciprocal of 2π is π2.

3. These functions are reciprocals, and the reciprocal of 4 is 14.

Concept Problem Solution

Since the three regular trig functions are defined as:

sin=oppositehypotenusecos=adjacenthypotenusetan=oppositeadjacent

then the three functions - called "reciprocal functions" are:

csc=hypotenuseoppositesec=hypotenuseadjacentcot=adjacentopposite

Practice

  1. State the reciprocal function of secant.
  2. State the reciprocal function of cotangent.
  3. State the reciprocal function of sine.

Find the value of the expression using a reciprocal identity.

  1. sinθ=12,cscθ=?
  2. cosθ=32,secθ=?
  3. tanθ=1,cotθ=?
  4. secθ=2,cosθ=?
  5. cscθ=2,sinθ=?
  6. cotθ=1,tanθ=?
  7. sinθ=32,cscθ=?
  8. cosθ=0,secθ=?
  9. tanθ=undefined,cotθ=?
  10. cscθ=233,sinθ=?
  11. sinθ=12 and tanθ=33,cosθ=?
  12. cosθ=22 and tanθ=1,sinθ=?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Vocabulary

domain

The domain of a function is the set of x-values for which the function is defined.

Range

The range of a function is the set of y values for which the function is defined.

Reciprocal Trig Function

A reciprocal trigonometric function is a function that is the reciprocal of a typical trigonometric function. For example, since \sin x = \frac{opposite}{hypotenuse}, the reciprocal function is \csc x = \frac{hypotenuse}{opposite}

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Subjects:
Grades:
Date Created:
Sep 26, 2012
Last Modified:
Mar 23, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.TRG.183.L.1
Here