<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

3.7: Sine Sum and Difference Formulas

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated21 minsto complete
%
Progress
Practice Sine Sum and Difference Formulas
 
 
 
MEMORY METER
This indicates how strong in your memory this concept is
Practice
Progress
Estimated21 minsto complete
%
Estimated21 minsto complete
%
Practice Now
MEMORY METER
This indicates how strong in your memory this concept is
Turn In

You've gotten quite good at knowing the values of trig functions. So much so that you and your friends play a game before class everyday to see who can get the most trig functions of different angles correct. However, your friend Jane keeps getting the trig functions of more angles right. You're amazed by her memory, until she smiles one day and tells you that she's been fooling you all this time.

"What you do you mean?" you say.

"I have a trick that lets me calculate more functions in my mind by breaking them down into sums of angles." she replies.

You're really surprised by this. And all this time you thought she just had an amazing memory!

"Here, let me show you," she says. She takes a piece of paper out and writes down:

sin7π12

"This looks like an unusual value to remember for a trig function. So I have a special rule that helps me to evaluate it by breaking it into a sum of different numbers."

By the end of this Concept, you'll be able to calculate the above function using a special rule, just like Jane does.

Watch This

James Sousa: Sum and Difference Identities for Sine

Guidance

Our goal here is to figure out a formula that lets you break down a the sine of a sum of two angles (or a difference of two angles) into a simpler formula that lets you use the sine of only one argument in each term.

To find sin(a+b):

sin(a+b)=cos[π2(a+b)]=cos[(π2a)b]=cos(π2a)cosb+sin(π2a)sinb=sinacosb+cosasinbSet θ=a+bDistribute the negativeDifference Formula for cosinesCo-function Identities

In conclusion, sin(a+b)=sinacosb+cosasinb, which is the sum formula for sine.

To obtain the identity for sin(ab):

sin(ab)sin(ab)=sin[a+(b)]=sinacos(b)+cosasin(b)=sinacosbcosasinbUse the sine sum formulaUse cos(b)=cosb, and sin(b)=sinb

In conclusion, sin(ab)=sinacosbcosasinb, so, this is the difference formula for sine.

Example A

Find the exact value of sin5π12

Solution: Recall that there are multiple angles that add or subtract to equal any angle. Choose whichever formula that you feel more comfortable with.

sin5π12sin5π12=sin(3π12+2π12)=sin3π12cos2π12+cos3π12sin2π12=22×32+22×12=6+24

Example B

Given sinα=1213, where α is in Quadrant II, and sinβ=35, where β is in Quadrant I, find the exact value of sin(α+β).

Solution: To find the exact value of sin(α+β), here we use sin(α+β)=sinαcosβ+cosαsinβ. The values of sinα and sinβ are known, however the values of cosα and cosβ need to be found.

Use sin2α+cos2α=1, to find the values of each of the missing cosine values.

For cosa:sin2α+cos2α=1, substituting sinα=1213 transforms to (1213)2+cos2α=144169+cos2α=1 or cos2α=25169cosα=±513, however, since α is in Quadrant II, the cosine is negative, cosα=513.

For cosβ use sin2β+cos2β=1 and substitute sinβ=35,(35)2+cos2β=925+cos2β=1 or cos2β=1625 and cosβ=±45 and since β is in Quadrant I, cosβ=45

Now the sum formula for the sine of two angles can be found:

sin(α+β)sin(α+β)=1213×45+(513)×35 or 48651565=3365

Example C

Find the exact value of sin15

Solution: Recall that there are multiple angles that add or subtract to equal any angle. Choose whichever formula that you feel more comfortable with.

sin15sin15=sin(4530)=sin45cos30+cos45sin30=(.707)×(.866)+(.707)×(.5)=(.612262)×(.3535)=.2164

Vocabulary

Sine Sum Formula: The sine sum formula relates the sine of a sum of two arguments to a set of sine and cosines functions, each containing one argument.

Sine Difference Formula: The sine difference formula relates the sine of a difference of two arguments to a set of sine and cosines functions, each containing one argument.

Guided Practice

1. Find the exact value for sin345

2. Find the exact value for sin17π12

3. If siny=513, y is in quad III, and sinz=45, z is in quad II find sin(y+z)

Solutions:

1.

sin345=sin(300+45)=sin300cos45+cos300sin45=3222+1222=64+24=264

2.

sin17π12=sin(9π12+8π12)=sin(3π4+2π3)=sin3π4cos2π3+cos3π4sin2π3=22(12)+2232=2464=264

3.

If siny=513 and in Quadrant III, then cosine is also negative. By the Pythagorean Theorem, the second leg is 12(52+b2=132), so cosy=1213. If the sinz=45 and in Quadrant II, then the cosine is also negative. By the Pythagorean Theorem, the second leg is \begin{align*}3 (4^2 + b^2 = 5^2)\end{align*}, so \begin{align*}\cos = - \frac{3}{5}\end{align*}. To find \begin{align*}\sin(y + z)\end{align*}, plug this information into the sine sum formula.

\begin{align*}\sin (y + z) & = \sin y \cos z + \cos y \sin z \\ & = - \frac{5}{13} \cdot - \frac{3}{5} + - \frac{12}{13} \cdot \frac{4}{5} = \frac{15}{65} - \frac{48}{65} = - \frac{33}{65}\end{align*}}}

Concept Problem Solution

With the sine sum formula, you can break the sine into easier to calculate quantities:

\begin{align*} \sin \frac{7\pi}{12} = \sin \left( \frac{4\pi}{12} + \frac{3\pi}{12}\right)\\ =\sin \left( \frac{\pi}{3} + \frac{\pi}{4}\right)\\ =\sin(\frac{\pi}{3})\cos(\frac{\pi}{4}) + cos(\frac{\pi}{3})sin(\frac{\pi}{4})\\ =\left(\frac{\sqrt{3}}{2} \right) \left(\frac{\sqrt{2}}{2} \right) + \left(\frac{1}{2} \right) \left(\frac{\sqrt{2}}{2} \right)\\ =\frac{\sqrt{6}}{4} +\frac{\sqrt{2}}{4}\\ =\frac{\sqrt{6}+ \sqrt{2}}{4}\\ \end{align*}

Practice

Find the exact value for each sine expression.

  1. \begin{align*}\sin75^\circ\end{align*}
  2. \begin{align*}\sin105^\circ\end{align*}
  3. \begin{align*}\sin165^\circ\end{align*}
  4. \begin{align*}\sin255^\circ\end{align*}
  5. \begin{align*}\sin-15^\circ\end{align*}

Write each expression as the sine of an angle.

  1. \begin{align*}\sin46^\circ\cos20^\circ+\cos46^\circ\sin20^\circ\end{align*}
  2. \begin{align*}\sin3x\cos2x-\cos3x\sin2x\end{align*}
  3. \begin{align*}\sin54^\circ\cos12^\circ+\cos54^\circ\sin12^\circ\end{align*}
  4. \begin{align*}\sin29^\circ\cos10^\circ-\cos29^\circ\sin10^\circ\end{align*}
  5. \begin{align*}\sin4y\cos3y+\cos4y\sin2y\end{align*}
  6. Prove that \begin{align*}\sin(x-\frac{\pi}{2})=-\cos(x)\end{align*}
  7. Suppose that x, y, and z are the three angles of a triangle. Prove that \begin{align*}\sin(x+y)=\sin(z)\end{align*}
  8. Prove that \begin{align*}\sin(\frac{\pi}{2}-x)=\cos(x)\end{align*}
  9. Prove that \begin{align*}\sin(x+\pi)=-\sin(x)\end{align*}
  10. Prove that \begin{align*}\sin(x-y)+\sin(x+y)=2\sin(x)\cos(y)\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Vocabulary

Sine Difference Formula

The sine difference formula relates the sine of a difference of two arguments to a set of sine and cosines functions, each containing one argument.

Sine Sum Formula

The sine sum formula relates the sine of a sum of two arguments to a set of sine and cosines functions, each containing one argument.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Subjects:
Grades:
Date Created:
Sep 26, 2012
Last Modified:
Aug 11, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.TRG.334.L.1
Here