<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# 6.2: Distance Between Two Polar Coordinates

Difficulty Level: At Grade Created by: CK-12
Estimated10 minsto complete
%
Progress
Practice Distance Between Two Polar Coordinates

MEMORY METER
This indicates how strong in your memory this concept is
Progress
Estimated10 minsto complete
%
Estimated10 minsto complete
%
MEMORY METER
This indicates how strong in your memory this concept is

When playing a game of darts with your friend, the darts you throw land in a pattern like this

You and your friend decide to find out how far it is between the two darts you threw. If you know the positions of each of the darts in polar coordinates, can you somehow find a formula to let you determine the distance between the two darts?

At the end of this Concept, you'll be able to answer this question.

### Guidance

Just like the Distance Formula for x\begin{align*}x\end{align*} and y\begin{align*}y\end{align*} coordinates, there is a way to find the distance between two polar coordinates. One way that we know how to find distance, or length, is the Law of Cosines, a2=b2+c22bccosA\begin{align*}a^2 = b^2 + c^2 - 2bc \cos A\end{align*} or a=b2+c22bccosA\begin{align*}a = \sqrt{b^2 + c^2 - 2bc \cos A}\end{align*}. If we have two points (r1,θ1)\begin{align*}(r_1, \theta_1)\end{align*} and (r2,θ2)\begin{align*}(r_2, \theta_2)\end{align*}, we can easily substitute r1\begin{align*}r_1\end{align*} for b\begin{align*}b\end{align*} and r2\begin{align*}r_2\end{align*} for c\begin{align*}c\end{align*}. As for A\begin{align*}A\end{align*}, it needs to be the angle between the two radii, or (θ2θ1)\begin{align*}(\theta_2 - \theta_1)\end{align*}. Finally, a\begin{align*}a\end{align*} is now distance and you have d=r21+r222r1r2cos(θ2θ1)\begin{align*}d = \sqrt{r^2_1 + r^2_2 - 2 r_1 r_2 \cos (\theta_2 - \theta_1)}\end{align*}.

#### Example A

Find the distance between (3,60)\begin{align*}(3, 60^\circ)\end{align*} and (5,145)\begin{align*}(5, 145^\circ)\end{align*}.

Solution: After graphing these two points, we have a triangle. Using the new Polar Distance Formula, we have d=32+522(3)(5)cos855.6\begin{align*}d = \sqrt{3^2 + 5^2 - 2(3)(5) \cos 85^\circ} \approx 5.6\end{align*}.

#### Example B

Find the distance between (9,45)\begin{align*}(9, -45^\circ)\end{align*} and (4,70)\begin{align*}(-4, 70^\circ)\end{align*}.

Solution: This one is a little trickier than the last example because we have negatives. The first point would be plotted in the fourth quadrant and is equivalent to (9,315)\begin{align*}(9, 315^\circ)\end{align*}. The second point would be (4,70)\begin{align*}(4, 70^\circ)\end{align*} reflected across the pole, or (4,250)\begin{align*}(4, 250^\circ)\end{align*}. Use these two values of θ\begin{align*}\theta\end{align*} for the formula. Also, the radii should always be positive when put into the formula. That being said, the distance is d=92+422(9)(4)cos(315250)8.16\begin{align*}d = \sqrt{9^2 + 4^2 - 2(9)(4) \cos (315-250)^\circ} \approx 8.16\end{align*}.

#### Example C

Find the distance between (2,10)\begin{align*}(2, 10^\circ)\end{align*} and (7,10)\begin{align*}(7, 10^\circ)\end{align*}.

Solution: This problem is straightforward from looking at the relationship between the points. The two points lie at the same angle, so the straight line distance between them is \begin{align*}7-2 = 5\end{align*}. However, we can confirm this using the distance formula:

\begin{align*}d = \sqrt{2^2 + 7^2 - 2(2)(7) \cos 0^\circ} = \sqrt{4+49-28} = \sqrt{25} = 5 \end{align*}.

### Vocabulary

Polar Coordinates: A set of polar coordinates are a set of coordinates plotted on a system that uses the distance from the origin and angle from an axis to describe location.

### Guided Practice

1. Given \begin{align*}P_1\end{align*} and \begin{align*}P_2\end{align*}, calculate the distance between the points.

\begin{align*}P_1 (1,30^\circ)\end{align*} and \begin{align*}P_2 (6,135^\circ)\end{align*}

2. Given \begin{align*}P_1\end{align*} and \begin{align*}P_2\end{align*}, calculate the distance between the points.

\begin{align*}P_1 (2,-65^\circ)\end{align*} and \begin{align*}P_2 (9,85^\circ)\end{align*}

3. Given \begin{align*}P_1\end{align*} and \begin{align*}P_2\end{align*}, calculate the distance between the points.

\begin{align*}P_1 (-3,142^\circ)\end{align*} and \begin{align*}P_2 (10,-88^\circ)\end{align*}

Solutions:

1. Use \begin{align*}P_1 P_2 = \sqrt{r^2_1 + r^2_2 - 2r_1 r_2 \cos (\theta_2 - \theta_1)}\end{align*}.

\begin{align*}P_1 P_2 & = \sqrt{1^2 + 6^2 - 2(1)(6) \cos (135^\circ - 30^\circ)} \\ P_1 P_2 & \approx 6.33\ units\end{align*}

2. Use \begin{align*}P_1 P_2 = \sqrt{r^2_1 + r^2_2 - 2r_1 r_2 \cos (\theta_2 - \theta_1)}\end{align*}.

\begin{align*}P_1 P_2 & = \sqrt{2^2 + 9^2 - 2(2)(9) \cos 150^\circ} \\ & = 10.78\end{align*}

3. Use \begin{align*}P_1 P_2 = \sqrt{r^2_1 + r^2_2 - 2r_1 r_2 \cos (\theta_2 - \theta_1)}\end{align*}.

\begin{align*}P_1 P_2 & = \sqrt{3^2 + 10^2 - 2(3)(10) \cos (322 - 272)^\circ} \\ & = 8.39\end{align*}

### Concept Problem Solution

Using the Distance Formula for points in a polar plot, it is possible to determine the distance between the 2 darts:

\begin{align*} d = \sqrt{3^2 + 6^2 - 2(4)(6) \cos 45^\circ}\\ d = \sqrt{9 + 36 - 48(.707)}\\ d = \sqrt{45 - 33.936}\\ d \approx 11.064\\ \end{align*}

### Practice

Find the distance between each set of points.

1. \begin{align*}(1, 150^\circ )\end{align*} and \begin{align*}(2, 130^\circ )\end{align*}
2. \begin{align*}(4, 90^\circ )\end{align*} and \begin{align*}(5, 210^\circ )\end{align*}
3. \begin{align*}(6, 60^\circ )\end{align*}and \begin{align*}(2, 90^\circ )\end{align*}
4. \begin{align*}(2, 120^\circ )\end{align*} and \begin{align*}(1, 150^\circ )\end{align*}
5. \begin{align*}(7, 210^\circ )\end{align*} and \begin{align*}(4, 300^\circ )\end{align*}
6. \begin{align*}(-4, 120^\circ )\end{align*} and \begin{align*}(2, 100^\circ )\end{align*}
7. \begin{align*}(3, -90^\circ )\end{align*} and \begin{align*}(5, 150^\circ )\end{align*}
8. \begin{align*}(-4, -30^\circ )\end{align*} and \begin{align*}(3, 250^\circ )\end{align*}
9. \begin{align*}(7, -150^\circ )\end{align*} and \begin{align*}(4, 130^\circ )\end{align*}
10. \begin{align*}(-2, 300^\circ )\end{align*} and \begin{align*}(2, 10^\circ )\end{align*}
11. Find the length of the arc between the points \begin{align*}(3, 40^\circ )\end{align*} and \begin{align*}(3, 150^\circ )\end{align*}.
12. Find the length of the arc between the points \begin{align*}(1, 10^\circ )\end{align*} and \begin{align*}(1, 70^\circ )\end{align*}.
13. Find the area of the sector created by the origin and the points \begin{align*}(4, 20^\circ ) \end{align*} and \begin{align*}(4, 110^\circ ) \end{align*}.
14. Find the area of the sector created by the origin and the points \begin{align*}(2, 100^\circ ) \end{align*} and \begin{align*}(2, 180^\circ ) \end{align*}.
15. Find the area of the sector created by the origin and the points \begin{align*}(5, 110^\circ ) \end{align*} and \begin{align*}(5, 160^\circ ) \end{align*}.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Show Hide Details
Description
Difficulty Level:
Tags:
Subjects: