<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

6.6: Rectangular to Polar Form for Equations

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated10 minsto complete
%
Progress
Practice Rectangular to Polar Form for Equations
Practice
Progress
Estimated10 minsto complete
%
Practice Now
Turn In

You are working diligently in your math class when your teacher gives you an equation to graph:

\begin{align*}(x + 1)^2 - (y + 2)^2 = 7\end{align*}

As you start to consider how to rearrange this equation, you are told that the goal of the class is to convert the equation to polar form instead of rectangular form.

Can you find a way to do this?

By the end of this Concept, you'll be able to convert this equation to polar form.

Watch This

James Sousa Example: Find the Polar Equation for a Line

Guidance

Interestingly, a rectangular coordinate system isn't the only way to plot values. A polar system can be useful. However, it will often be the case that there are one or more equations that need to be converted from rectangular to polar form. To write a rectangular equation in polar form, the conversion equations of \begin{align*}x = r \cos \theta\end{align*} and \begin{align*}y = r \sin \theta\end{align*} are used.

If the graph of the polar equation is the same as the graph of the rectangular equation, then the conversion has been determined correctly.

\begin{align*}(x-2)^2+y^2=4\end{align*}

The rectangular equation \begin{align*}(x - 2)^2 + y^2 = 4\end{align*} represents a circle with center (2, 0) and a radius of 2 units. The polar equation \begin{align*}r = 4 \cos \theta\end{align*} is a circle with center (2, 0) and a radius of 2 units.

Example A

Write the rectangular equation \begin{align*}x^2 + y^2 = 2x\end{align*} in polar form.

Solution: Remember \begin{align*}r = \sqrt{x^2 + y^2}, r^2 = x^2 + y^2\end{align*} and \begin{align*}x = r \cos \theta\end{align*}.

\begin{align*}x^2 + y^2 &= 2x\\ r^2 &= 2(r \cos \theta) && Pythagorean \ Theorem \ and \ x = r \cos \theta\\ r^2 &= 2r \cos \theta\\ r &= 2 \cos \theta && Divide \ each \ side \ by \ r\end{align*}

Example B

Write \begin{align*}(x - 2)^2 + y^2 = 4\end{align*} in polar form.

Remember \begin{align*}x = r \cos \theta\end{align*} and \begin{align*}y = r \sin \theta\end{align*}.

\begin{align*}&(x - 2)^2 + y^2 = 4\\ &(r \cos \theta - 2)^2 + (r \sin \theta)^2 = 4 && x = r \cos \theta \ and \ y = r \sin \theta\\ &r^2 \cos^2 \theta - 4r \cos \theta + 4 + r^2 \sin^2 \theta = 4 && expand \ the \ terms\\ &r^2 \cos^2 \theta - 4r \cos \theta + r^2 \sin^2 \theta = 0 && subtract \ 4 \ from \ each \ side\\ &r^2 \cos^2 \theta + r^2 \sin^2 \theta = 4r \cos \theta && isolate \ the \ squared \ terms\\ &r^2 (\cos^2 \theta + \sin^2 \theta) = 4r \cos \theta && factor \ r^2 - a \ common \ factor\\ &r^2 = 4r \cos \theta && Pythagorean \ Identity\\ &r = 4 \cos \theta && Divide \ each \ side \ by \ r\end{align*}

Example C

Write the rectangular equation \begin{align*}(x+4)^2 + (y-1)^2 = 17\end{align*} in polar form.

\begin{align*}&(x+4)^2 + (y-1)^2 = 17\\ &(r \cos \theta + 4)^2 + (r \sin \theta - 1)^2 = 17 && x = r \cos \theta \ and \ y = r \sin \theta\\ &r^2 \cos^2 \theta + 8r \cos \theta + 16 + r^2 \sin^2 \theta - 2r \sin \theta + 1 = 17 && expand \ the \ terms\\ &r^2 \cos^2 \theta + 8r \cos \theta - 2r \sin \theta + r^2 \sin^2 \theta = 0 && subtract \ 17 \ from \ each \ side\\ &r^2 \cos^2 \theta + r^2 \sin^2 \theta = -8r \cos \theta + 2r \sin \theta && isolate \ the \ squared \ terms\\ &r^2 (\cos^2 \theta + \sin^2 \theta) = -2r (4\cos \theta - \sin \theta) && factor \ r^2 - a \ common \ factor\\ &r^2 = -2r (4\cos \theta - \sin \theta) && Pythagorean \ Identity\\ &r = -2(4\cos \theta - \sin \theta) && Divide \ each \ side \ by \ r\end{align*}

Vocabulary

Polar Coordinates: A set of polar coordinates are a set of coordinates plotted on a system that uses the distance from the origin and angle from an axis to describe location.

Rectangular Coordinates: A set of rectangular coordinates are a set of coordinates plotted on a system using basis axes at right angles to each other.

Guided Practice

1. Write the rectangular equation \begin{align*}(x - 4)^2 + (y - 3)^2 = 25\end{align*} in polar form.

2. Write the rectangular equation \begin{align*}3x - 2y = 1\end{align*} in polar form.

3. Write the rectangular equation \begin{align*}x^2 + y^2 - 4x + 2y = 0\end{align*} in polar form.

Solutions:

1.

\begin{align*}(x - 4)^2 + (y - 3)^2 & = 25 \\ x^2 - 8x + 16 + y^2 - 6y + 9 & = 25 \\ x^2 - 8x + y^2 - 6y + 25 & = 25 \\ x^2 - 8x + y^2 - 6y & = 0 \\ x^2 + y^2 - 8x - 6y & = 0 \\ r^2 - 8(r \cos \theta) - 6(r \sin \theta) & = 0 \\ r^2 - 8r \cos \theta - 6r \sin \theta & = 0 \\ r(r - 8 \cos \theta - 6 \sin \theta) & = 0 \\ r = 0\ \text{or}\ r - 8 \cos \theta - 6 \sin \theta & = 0 \\ r = 0\ \text{or}\ r & = 8 \cos \theta + 6 \sin \theta\end{align*}

From graphing \begin{align*}r-8\cos \theta -6\sin \theta =0\end{align*}, we see that the additional solutions are 0 and 8.

2.

\begin{align*}3x - 2y & = 1 \\ 3r \cos \theta - 2r \sin \theta & = 1 \\ r (3 \cos \theta - 2 \sin \theta) & = 1 \\ r & = \frac{1}{3 \cos \theta - 2 \sin \theta}\end{align*}

3.

\begin{align*}x^2 + y^2 - 4x + 2y & = 0 \\ r^2 \cos^2 \theta + r^2 \sin^2 \theta - 4 r \cos \theta + 2 r \sin \theta & = 0 \\ r^2 (\sin^2 \theta + \cos^2 \theta) - 4 r \cos \theta + 2 r \sin \theta & = 0 \\ r (r - 4 \cos \theta + 2 \sin \theta) & = 0 \\ r = 0\ \text{or}\ r - 4 \cos \theta + 2 \sin \theta & = 0 \\ r = 0\ \text{or}\ r & = 4 \cos \theta - 2 \sin \theta\end{align*}

Concept Problem Solution

The original equation to convert is:

\begin{align*}(x + 1)^2 - (y + 2)^2 = 7\end{align*}

You can substitute \begin{align*}x = r\cos \theta\end{align*} and \begin{align*}y = r\sin \theta\end{align*} into the equation, and then simplify:

\begin{align*} (r\cos \theta +1)^2 - (r\sin \theta + 2)^2 = 7\\ (r^2\cos^2 \theta + 2r\cos \theta +1) - (r^2\sin^2 \theta + 2r\cos \theta + 4) = 7\\ r^2(\cos^2 \theta + \sin^2 \theta) + 4r\cos \theta + 5 = 7\\ r^2 + 4r\cos \theta = 2 \end{align*}

Practice

Write each rectangular equation in polar form.

  1. \begin{align*}x=3\end{align*}
  2. \begin{align*}y=4\end{align*}
  3. \begin{align*}x^2+y^2=4\end{align*}
  4. \begin{align*}x^2+y^2=9\end{align*}
  5. \begin{align*}(x-1)^2+y^2=1\end{align*}
  6. \begin{align*}(x-2)^2+(y-3)^2=13\end{align*}
  7. \begin{align*}(x-1)^2+(y-3)^2=10\end{align*}
  8. \begin{align*}(x+2)^2+(y+2)^2=8\end{align*}
  9. \begin{align*}(x+5)^2+(y-1)^2=26\end{align*}
  10. \begin{align*}x^2+(y-6)^2=36\end{align*}
  11. \begin{align*}x^2+(y+2)^2=4\end{align*}
  12. \begin{align*}2x+5y=11\end{align*}
  13. \begin{align*}4x-7y=10\end{align*}
  14. \begin{align*}x+5y=8\end{align*}
  15. \begin{align*}3x-4y=15\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Subjects:
Grades:
Date Created:
Sep 26, 2012
Last Modified:
Aug 11, 2016
Files can only be attached to the latest version of Modality
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.TRG.636.L.1
Here