<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

1.2: Identifying Sets of Pythagorean Triples

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
Estimated7 minsto complete
%
Progress
Practice Identifying Sets of Pythagorean Triples
Practice
Progress
Estimated7 minsto complete
%
Practice Now

While working as an architect's assistant, you're asked to utilize your knowledge of the Pythagorean Theorem to determine if the lengths of a particular triangular brace support qualify as a Pythagorean Triple. You measure the sides of the brace and find them to be 7 inches, 24 inches, and 25 inches. Can you determine if the lengths of the sides of the triangular brace qualify as a Pythagorean Triple? 

Pythagorean Triples

Pythagorean Triples are sets of whole numbers for which the Pythagorean Theorem holds true. The most well-known triple is 3, 4, 5. This means that 3 and 4 are the lengths of the legs and 5 is the hypotenuse. The largest length is always the hypotenuse. If we were to multiply any triple by a constant, this new triple would still represent sides of a right triangle. Therefore, 6, 8, 10 and 15, 20, 25, among countless others, would represent sides of a right triangle.

 

 

 

 

Determine if the following lengths are Pythagorean Triples.

7, 24, 25

Plug the given numbers into the Pythagorean Theorem.

\begin{align*}7^2 + 24^2 & \overset{\underset{?}{}}{=} 25^2\\ 49 + 576 & = 625\\ 625 & = 625\end{align*}

Yes, 7, 24, 25 is a Pythagorean Triple and sides of a right triangle.

Determine if the following lengths are Pythagorean Triples.

9, 40, 41

Plug the given numbers into the Pythagorean Theorem.

\begin{align*}9^2 + 40^2 & \overset{\underset{?}{}}{=} 41^2\\ 81 + 1600 & =1681\\ 1681 & =1681\end{align*}

Yes, 9, 40, 41 is a Pythagorean Triple and sides of a right triangle.

Determine if the following lengths are Pythagorean Triples.

11, 56, 57

Plug the given numbers into the Pythagorean Theorem.

\begin{align*}11^2 + 56^2 & \overset{\underset{?}{}}{=} 57^2\\ 121 + 3136 & = 3249\\ 3257 & \ne 3249\end{align*}

No, 11, 56, 57 do not represent the sides of a right triangle.

Examples

Example 1

Earlier, you were asked to utilize your knowledge of the Pythagorean Theorem to determine if the lengths of a particular triangular brace support qualify as a Pythagorean Triple.

Since you know that the sides of the brace have lengths of 7, 24, and 25 inches, you can substitute these values in the Pythagorean Theorem. If the Pythagorean Theorem is satisfied, then you know with certainty that these are indeed sides of a triangle with a right angle:

\begin{align*}7^2 + 24^2 & \overset{\underset{?}{}}{=} 25^2\\ 49 + 576 & = 625\\ 625 & = 625\end{align*}

The Pythagorean Theorem is satisfied with these values as a lengths of sides of a right triangle. Since each of the sides is a whole number, this is indeed a set of Pythagorean Triples.

Example 2

Determine if the following lengths are Pythagorean Triples.

5, 10, 13

Plug the given numbers into the Pythagorean Theorem.

\begin{align*}5^2 + 10^2 & \overset{\underset{?}{}}{=} 13^2\\ 25 + 100 & = 169\\ 125 & \ne 169\end{align*}

No, 5, 10, 13 is not a Pythagorean Triple and not the sides of a right triangle.

Example 3

Determine if the following lengths are Pythagorean Triples.

8, 15, 17

Plug the given numbers into the Pythagorean Theorem.

\begin{align*}8^2 + 15^2 & \overset{\underset{?}{}}{=} 17^2\\ 64 + 225 & = 289\\ 289 & = 289\end{align*}

Yes, 8, 15, 17 is a Pythagorean Triple and sides of a right triangle.

Example 4

Determine if the following lengths are Pythagorean Triples.

11, 60, 61

Plug the given numbers into the Pythagorean Theorem.

\begin{align*}11^2 + 60^2 & \overset{\underset{?}{}}{=} 61^2\\ 121 + 3600 & = 3721\\ 3721 & = 3721\end{align*}

Yes, 11, 60, 61 is a Pythagorean Triple and sides of a right triangle.

Review

  1. Determine if the following lengths are Pythagorean Triples: 9, 12, 15.
  2. Determine if the following lengths are Pythagorean Triples: 10, 24, 36.
  3. Determine if the following lengths are Pythagorean Triples: 4, 6, 8.
  4. Determine if the following lengths are Pythagorean Triples: 20, 99, 101.
  5. Determine if the following lengths are Pythagorean Triples: 21, 99, 101.
  6. Determine if the following lengths are Pythagorean Triples: 65, 72, 97.
  7. Determine if the following lengths are Pythagorean Triples: 15, 30, 62.
  8. Determine if the following lengths are Pythagorean Triples: 9, 39, 40.
  9. Determine if the following lengths are Pythagorean Triples: 48, 55, 73.
  10. Determine if the following lengths are Pythagorean Triples: 8, 15, 17.
  11. Determine if the following lengths are Pythagorean Triples: 13, 84, 85.
  12. Determine if the following lengths are Pythagorean Triples: 15, 16, 24.
  13. Explain why it might be useful to know some of the basic Pythagorean Triples.
  14. Prove that any multiple of 5, 12, 13 will be a Pythagorean Triple.
  15. Prove that any multiple of 3, 4, 5 will be a Pythagorean Triple.

Review (Answers)

To see the Review answers, open this PDF file and look for section 1.2. 

Vocabulary

Pythagorean Triple

Pythagorean Triple

A Pythagorean Triple is a set of three whole numbers a,b and c that satisfy the Pythagorean Theorem, a^2 + b^2 = c^2.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Subjects:
Grades:
Date Created:
Sep 26, 2012
Last Modified:
Mar 23, 2016
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.
Reviews
100 % of people thought this content was helpful.
0
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.TRG.112.L.1