# 1.21: Reciprocal Identities

**At Grade**Created by: CK-12

**Practice**Reciprocal Identities

You are already familiar with the trig identities of sine, cosine, and tangent. As you know, any fraction also has an inverse, which is found by reversing the positions of the numerator and denominator.

Can you list what the ratios would be for the three trig functions (sine, cosine, and tangent) with the numerators and denominators reversed?

At the end of this Concept, you'll be able to list these ratios, as well as know what they are called.

### Watch This

The first portion of this video will help you understand reciprocal functions.

James Sousa: The Reciprocal, Quotient, and Pythagorean Identities

### Guidance

A **reciprocal** of a fraction

First, consider the definition of the sine function for angles of rotation:

Analogously, the cosine function and the secant function are reciprocals, and the tangent and cotangent function are reciprocals:

#### Example A

Find the value of the expression using a reciprocal identity.

**Solution:**

These functions are reciprocals, so if

#### Example B

Find the value of the expression using a reciprocal identity.

**Solution:** These functions are reciprocals, and the reciprocal of

We can also use the reciprocal relationships to determine the domain and range of functions.

#### Example C

Find the value of the expression using a reciprocal identity.

**Solution:** These functions are reciprocals, and the reciprocal of

### Guided Practice

1. State the reciprocal function of cosecant.

2. Find the value of the expression using a reciprocal identity.

3. Find the value of the expression using a reciprocal identity.

**Solutions:**

1. The reciprocal function of cosecant is sine.

2. These functions are reciprocals, and the reciprocal of

3. These functions are reciprocals, and the reciprocal of

### Concept Problem Solution

Since the three regular trig functions are defined as:

then the three functions - called "reciprocal functions" are:

### Explore More

- State the reciprocal function of secant.
- State the reciprocal function of cotangent.
- State the reciprocal function of sine.

Find the value of the expression using a reciprocal identity.

sinθ=12,cscθ=? cosθ=−3√2,secθ=? tanθ=1,cotθ=? secθ=2√,cosθ=? cscθ=2,sinθ=? cotθ=−1,tanθ=? sinθ=3√2,cscθ=? cosθ=0,secθ=? tanθ= undefined,cotθ=? cscθ=23√3,sinθ=? sinθ=−12 andtanθ=3√3,cosθ=? cosθ=2√2 andtanθ=1,sinθ=?

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 1.21.

domain

The domain of a function is the set of -values for which the function is defined.Range

The range of a function is the set of values for which the function is defined.Reciprocal Trig Function

A reciprocal trigonometric function is a function that is the reciprocal of a typical trigonometric function. For example, since , the reciprocal function is### Image Attributions

## Description

## Learning Objectives

Here you'll learn what the reciprocal trig functions are, and how they relate to the sine, cosine, and tangent functions.

## Difficulty Level:

At Grade## Authors:

## Tags:

## Subjects:

## Search Keywords:

## Concept Nodes:

## Date Created:

Sep 26, 2012## Last Modified:

Feb 26, 2015## Vocabulary

**Save or share your relevant files like activites, homework and worksheet.**

To add resources, you must be the owner of the Modality. Click Customize to make your own copy.