# 1.3: Pythagorean Theorem to Classify Triangles

**At Grade**Created by: CK-12

**Practice**Pythagorean Theorem to Classify Triangles

While painting a wall in your home one day, you realize that the wall you are painting seems "tilted", as though it might fall over. You realize that if the wall is standing upright, the angle between the wall and the floor is ninety degrees. After a few careful measurements, you find that the distance from the bottom of the ladder to the wall is 3 feet, the top of the ladder is at a point 10 feet up on the wall, and the ladder is 12 feet long. Can you determine if the wall is still standing upright, or if it is starting to lean? When you've completed this Concept, you'll know for certain how to determine if the wall is standing upright.

### Watch This

James Sousa: The Pythagorean Theorem and the Converse of the Pythagorean Theorem

### Guidance

We can use the Pythagorean Theorem to help determine if a triangle is a right triangle, if it is acute, or if it is obtuse. To help you visualize this, think of an equilateral triangle with sides of length \begin{align*}5\end{align*}*It is important to note that the length \begin{align*}``c''\end{align*} ‘‘c′′ is always the longest.*

#### Example A

Determine if the following lengths make an acute, right or obtuse triangle.

5, 6, 7

**Solution:** Plug in each set of lengths into the Pythagorean Theorem.

a. \begin{align*}5^2 + 6^2 & \ ? \ 7^2\\ 25 + 36 & \ ? \ 49\\ 61 & > 49\end{align*}

Because \begin{align*}61>49\end{align*}

#### Example B

Determine if the following lengths make an acute, right or obtuse triangle.

5, 10, 14

**Solution:** Plug in each set of lengths into the Pythagorean Theorem.

b. \begin{align*}5^2 + 10^2 & \ ? \ 14^2\\ 25+ 100 & \ ? \ 196\\ 125 & < 196\end{align*}

Because \begin{align*}125<196\end{align*}

#### Example C

Determine if the following lengths make an acute, right or obtuse triangle.

12, 35, 37

**Solution:** Plug in each set of lengths into the Pythagorean Theorem.

c. \begin{align*}12^2 + 35^2 & \ ? \ 37^2\\ 144 + 1225 & \ ? \ 1369\\ 1369 & = 1369\end{align*}

Because the two sides are equal, this is a right triangle.

NOTE: All of the lengths in the above examples represent the lengths of the sides of a triangle. Recall the Triangle Inequality Theorem from geometry which states: The length of a side in a triangle is less than the sum of the other two sides. For example, 4, 7 and 13 cannot be the sides of a triangle because \begin{align*}4+7\end{align*} is not greater than 13.

### Guided Practice

1. Determine if the following lengths make an acute, right or obtuse triangle.

8, 15, 20

2. Determine if the following lengths make an acute, right or obtuse triangle.

15, 22, 25

**Answers:**

1. Plug in each set of lengths into the Pythagorean Theorem.

\begin{align*}8^2 + 15^2 & \ ? \ 20^2\\ 64 + 225 & \ ? \ 400\\ 289 & < 400\end{align*}

Because \begin{align*}289<400\end{align*}, this is an obtuse triangle.

2. Plug in each set of lengths into the Pythagorean Theorem.

\begin{align*}15^2 + 22^2 & \ ? \ 25^2\\ 225 + 484 & \ ? \ 625\\ 709 & > 625\end{align*}

Because \begin{align*}709>625\end{align*}, this is an acute triangle.

### Concept Problem Solution

The ladder is making a triangle with the floor as one side, the wall as another, and the ladder itself serves as the hypotenuse. To see if the wall is leaning, you can determine the type of triangle that is made with these lengths (right, acute, or obtuse). If the triangle is a right triangle, then the wall is standing upright. Otherwise, it is leaning.

Plugging the lengths of the sides into the Pythagorean Theorem:

\begin{align*}3^2 + 10^2 & \ ? \ 12^2\\ 9 + 100 & \ ? \ 144\\ 109 & < 144\end{align*}

Yes, you were right. Because 109 < 144, this is an obtuse triangle. The wall is leaning with an angle greater than ninety degrees.

### Explore More

Determine if each of the following lengths make a right triangle.

- 9, 40, 41.
- 12, 24, 26.
- 5, 10, 14.
- 3, \begin{align*}3\sqrt{3}\end{align*}, 6.

Determine if the following lengths make an acute, right or obtuse triangle.

- 10, 15, 18.
- 4, 20, 21.
- 15, 16, 17.
- 15, 15, \begin{align*}15\sqrt{2}\end{align*}.
- 12, 17, 19.
- 3, 4, 5.
- 12, \begin{align*}12\sqrt{3}\end{align*}, 24.
- 2, 4, 5.
- 3, 5, 7.
- Explain why if \begin{align*}a^2 + b^2 < c^2\end{align*} then the triangle is obtuse.
- Explain why if \begin{align*}a^2 + b^2 > c^2\end{align*} then the triangle is acute.

### Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 1.3.

Acute Triangle

An acute triangle has three angles that each measure less than 90 degrees.Obtuse Triangle

An obtuse triangle is a triangle with one angle that is greater than 90 degrees.Right Triangle

A right triangle is a triangle with one 90 degree angle.### Image Attributions

## Description

## Learning Objectives

Here you'll learn how to determine if a triangle is a right triangle, an acute triangle, or an obtuse triangle using a relationship between the lengths of the triangle's sides.

## Difficulty Level:

At Grade## Authors:

## Subjects:

## Search Keywords:

## Concept Nodes:

## Date Created:

Sep 26, 2012## Last Modified:

Feb 26, 2015## Vocabulary

**Save or share your relevant files like activites, homework and worksheet.**

To add resources, you must be the owner of the Modality. Click Customize to make your own copy.