<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

3.13: Sum to Product Formulas for Sine and Cosine

Difficulty Level: At Grade Created by: CK-12
Atoms Practice
0%
Progress
Practice Sum to Product Formulas for Sine and Cosine
Practice
Progress
0%
Practice Now

Can you solve problems that involve the sum of sines or cosines? For example, consider the equation:

\begin{align*}\cos 10t + \cos 3t\end{align*}

You could just compute each expression separately and add their values at the end. However, there is an easier way to do this. You can simplify the equation first, and then solve.

Read this Concept, and at the end of it, you'll be able to simplify this equation and transform it into a product of trig functions instead of a sum!

Sine and Cosine Sum to Product Formulas

In some problems, the product of two trigonometric functions is more conveniently found by the sum of two trigonometric functions by use of identities.

Here is an example: 

\begin{align*}\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \times \cos \frac{\alpha - \beta}{2}\end{align*}

This can be verified by using the sum and difference formulas:

\begin{align*}2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} &= 2 \begin{bmatrix} \sin \left( \frac{\alpha}{2} + \frac{\beta}{2} \right) \cos \left(\frac{\alpha}{2} - \frac{\beta}{2} \right) \end{bmatrix} \\ &= 2 \begin{bmatrix} \left( \sin \frac{\alpha}{2} \cos \frac{\beta}{2} + \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \left) \right( \cos \frac{\alpha}{2} \cos \frac{\beta}{2} + \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \right ) \end{bmatrix}\\ &= 2 \begin{bmatrix} \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \cos ^2 \frac{\beta}{2} + \sin ^2 \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\beta}{2} + \sin \frac{\beta}{2} \cos ^2 \frac{\alpha}{2} \cos \frac{\beta}{2} + \sin \frac{\alpha}{2} \sin ^2 \frac{\beta}{2} \cos \frac{\alpha}{2} \end{bmatrix}\\ &= 2 \begin{bmatrix} \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} \left( \sin^2 \frac{\beta}{2} + \cos^2 \frac{\beta}{2} \right) + \sin \frac{\beta}{2} \cos \frac{\beta}{2} \left( \sin^2 \frac{\alpha}{2} + \cos^2 \frac{\alpha}{2} \right) \end{bmatrix}\\ &= 2 \begin{bmatrix} \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} + \sin \frac{\beta}{2} \cos \frac{\beta}{2} \end{bmatrix}\\ &= 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2} + 2 \sin \frac{\beta}{2} \cos \frac{\beta}{2}\\ &= \sin \left( 2 \cdot \frac{\alpha}{2} \right) + \sin \left( 2 \cdot \frac{\beta}{2} \right)\\ &= \sin \alpha + \sin \beta\end{align*}

The following variations can be derived similarly:

\begin{align*} \sin \alpha - \sin \beta &= 2 \sin \frac{\alpha - \beta}{2} \times \cos \frac{\alpha + \beta}{2}\\ \cos \alpha + \cos \beta &= 2 \cos \frac{\alpha + \beta}{2} \times \cos \frac{\alpha - \beta}{2}\\ \cos \alpha - \cos \beta &= -2 \sin \frac{\alpha + \beta}{2} \times \sin \frac{\alpha - \beta}{2}\\\end{align*}

Here are some examples of this type of transformation from a sum of terms to a product of terms.

Solve each of the problems using the Sum to Product Formula

Change \begin{align*}\sin 5x - \sin 9x\end{align*} into a product.

Use the formula \begin{align*}\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \times \cos \frac{\alpha + \beta}{2}.\end{align*}

\begin{align*} \sin 5x - \sin 9x &= 2 \sin \frac{5x - 9x}{2} \cos \frac{5x + 9x}{2}\\ &= 2 \sin (-2x) \cos 7x\\ &= -2 \sin 2x \cos 7x\end{align*}

Change \begin{align*}\cos(-3x) + \cos 8x\end{align*} into a product.

Use the formula \begin{align*} \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \times \cos \frac{\alpha - \beta}{2}\end{align*}

\begin{align*}\cos (-3x) + \cos (8x) &= 2 \cos \frac{-3x + 8x}{2} \cos \frac {-3x - 8x}{2}\\ &= 2 \cos (2.5x) \cos (-5.5x)\\ &= 2 \cos (2.5x) \cos (5.5x)\end{align*}

Change \begin{align*}2 \sin 7x \cos 4x\end{align*} to a sum.

This is the reverse of what was done in the previous two examples. Looking at the four formulas above, take the one that has sine and cosine as a product, \begin{align*}\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \times \cos \frac{\alpha - \beta}{2}.\end{align*} Therefore, \begin{align*}7x = \frac{\alpha + \beta}{2}\end{align*} and \begin{align*}4x = \frac{\alpha - \beta}{2}\end{align*}.

\begin{align*}7x & = \frac{\alpha + \beta}{2} &&&& 4x = \frac{\alpha - \beta}{2} \\ &&& \text{and} \\ 14x & = \alpha+\beta &&&& 8x= \alpha - \beta \\ &\alpha = 14x - \beta &&&& 8x=[14x-\beta]-\beta \\ &&& \text{so} \\ &&&&&-6x = -2\beta\\ &&&&&3x=\beta\\ \alpha=14x-3x\\ \alpha=11x\end{align*}

So, this translates to \begin{align*}\sin(11x) + \sin(3x)\end{align*}. A shortcut for this problem, would be to notice that the sum of \begin{align*}7x\end{align*} and \begin{align*}4x\end{align*} is \begin{align*}11x\end{align*} and the difference is \begin{align*}3x\end{align*}.

Examples

Example 1

Earlier, you were asked to solve 

\begin{align*}\cos 10t + \cos 3t\end{align*}

You can easily transform this equation into a product of two trig functions using:

\begin{align*}\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \times \cos \frac{\alpha - \beta}{2}\end{align*}

Substituting the known quantities:

\begin{align*}\cos 10t + \cos 3t = 2 \cos \frac{13t}{2} \times \cos \frac{7t}{2} = 2\cos(6.5t) \cos(3.5t)\end{align*}

Example 2

Express the sum as a product: \begin{align*}\sin 9x + \sin 5x\end{align*}

Using the sum-to-product formula:

\begin{align*}& \sin 9x + \sin 5x\\ & 2 \left(\sin \left(\frac{9x + 5x}{2} \right) \cos \left(\frac{9x - 5x}{2} \right) \right)\\ & 2 \sin 7x \cos 2x\end{align*}

Example 3

 Express the difference as a product: \begin{align*}\cos 4y - \cos 3y \end{align*}

Using the difference-to-product formula:

\begin{align*}& \cos 4y - \cos 3y\\ & -2 \sin \left(\frac{4y + 3y}{2} \right) \sin \left(\frac{4y - 3y}{2} \right)\\ & -2 \sin \frac{7y}{2} \sin \frac{y}{2}\end{align*}

Example 4

Verify the identity (using sum-to-product formula): \begin{align*}\frac{\cos 3a - \cos 5a}{\sin 3a - \sin 5a} = - \tan 4a\end{align*}

Using the difference-to-product formulas:

\begin{align*}& \qquad \qquad \frac{\cos 3a - \cos 5a}{\sin 3a - \sin 5a} = - \tan 4a\\ & \frac{-2 \sin \left (\frac{3a + 5a}{2} \right ) \sin \left (\frac {3a - 5a}{2} \right )}{2 \sin \left (\frac{3a - 5a}{2} \right ) \cos \left(\frac{3a + 5a}{2} \right)}\\ & \qquad \qquad \qquad \ \ - \frac{\sin 4a}{\cos 4a}\\ & \qquad \qquad \qquad \ \ - \tan 4a\end{align*}

Review

Change each sum or difference into a product.

  1. \begin{align*}\sin 3x + \sin 2x\end{align*}
  2. \begin{align*}\cos 2x + \cos 5x\end{align*}
  3. \begin{align*}\sin (-x) - \sin 4x\end{align*}
  4. \begin{align*}\cos 12x + \cos 3x\end{align*}
  5. \begin{align*}\sin 8x - \sin 4x\end{align*}
  6. \begin{align*}\sin x + \sin \frac{1}{2}x\end{align*}
  7. \begin{align*}\cos 3x - \cos (-3x)\end{align*}

Change each product into a sum or difference.

  1. \begin{align*}-2\sin 3.5x \sin 2.5x\end{align*}
  2. \begin{align*}2\cos 3.5x \sin 0.5x\end{align*}
  3. \begin{align*}2\cos 3.5x \cos 5.5x\end{align*}
  4. \begin{align*}2\sin 6x \cos 2x\end{align*}
  5. \begin{align*}-2\sin 3x \sin x\end{align*}
  6. \begin{align*}2\sin 4x \cos x\end{align*}
  7. Show that \begin{align*}\cos\frac{A+B}{2}\cos\frac{A-B}{2}=\frac{1}{2}(\cos A + \cos B)\end{align*}.
  8. Let \begin{align*}u=\frac{A+B}{2}\end{align*} and \begin{align*}v=\frac{A-B}{2}\end{align*}. Show that \begin{align*}\cos u\cos v =\frac{1}{2}(\cos (u+v)+\cos(u-v)).\end{align*}

Answers for Review Problems

To see the Review answers, open this PDF file and look for section 3.13. 

Vocabulary

Sum to Product Formula

Sum to Product Formula

A sum to product formula relates the sum or difference of two trigonometric functions to the product of two trigonometric functions.

Image Attributions

Show Hide Details
Description
Difficulty Level:
At Grade
Subjects:
Grades:
Date Created:
Sep 26, 2012
Last Modified:
Mar 25, 2016
Files can only be attached to the latest version of Modality
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
MAT.TRG.361.L.1

Original text