<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

3.6: Cosine Sum and Difference Formulas

Difficulty Level: At Grade Created by: CK-12
Estimated18 minsto complete
%
Progress
Practice Cosine Sum and Difference Formulas
Progress
Estimated18 minsto complete
%

While playing a board game with friends, you are using a spinner like this one:

When you tap the spinner with your hand, it rotates 110\begin{align*}110^\circ\end{align*}. However, at that moment, someone taps the game board and the spinner moves back a little to 80\begin{align*}80^\circ\end{align*}. One of your friends, who is a grade above you in math, starts talking to you about trig functions.

"Do you think you can calculate the cosine of the difference between those angles?" he asks.

"Hmm," you reply. "Sure. I think it's just cos(11080)=cos30\begin{align*}\cos (110^\circ - 80^\circ) = \cos 30^\circ\end{align*}."

Your friend smiles. "Are you sure?" he asks.

You realize you aren't sure at all. Can you solve this problem? Read this Concept, and by the end you'll be able to calculate the cosine of the difference of the angles.

Watch This

James Sousa: Sum and Difference Identities for Cosine

Guidance

When thinking about how to calculate values for trig functions, it is natural to consider what the value is for the trig function of a difference of two angles. For example, is cos15=cos(4530)\begin{align*}\cos 15^\circ = \cos (45^\circ - 30^\circ)\end{align*}? Upon appearance, yes, it is. This section explores how to find an expression that would equal cos(4530)\begin{align*}\cos (45^\circ - 30^\circ)\end{align*}. To simplify this, let the two given angles be a\begin{align*}a\end{align*} and b\begin{align*}b\end{align*} where 0<b<a<2π\begin{align*}0 < b < a < 2\pi\end{align*}.

Begin with the unit circle and place the angles a\begin{align*}a\end{align*} and b\begin{align*}b\end{align*} in standard position as shown in Figure A. Point Pt1 lies on the terminal side of b\begin{align*}b\end{align*}, so its coordinates are (cosb,sinb)\begin{align*}(\cos b, \sin b)\end{align*} and Point Pt2 lies on the terminal side of a\begin{align*}a\end{align*} so its coordinates are (cosa,sina)\begin{align*}(\cos a, \sin a)\end{align*}. Place the ab\begin{align*}a - b\end{align*} in standard position, as shown in Figure B. The point A has coordinates (1,0)\begin{align*}(1, 0)\end{align*} and the Pt3 is on the terminal side of the angle ab\begin{align*}a - b\end{align*}, so its coordinates are (cos[ab],sin[ab])\begin{align*}(\cos[a - b], \sin[a - b])\end{align*}.

Triangles OP1P2\begin{align*}OP_1P_2\end{align*} in figure A and Triangle OAP3\begin{align*}OAP_3\end{align*} in figure B are congruent. (Two sides and the included angle, ab\begin{align*}a - b\end{align*}, are equal). Therefore the unknown side of each triangle must also be equal. That is: d (A,P3)=d (P1,P2)\begin{align*}d\ (A, P_3) = d\ (P_1, P_2)\end{align*}

Applying the distance formula to the triangles in Figures A and B and setting them equal to each other:

Square both sides to eliminate the square root.

FOIL all four squared expressions and simplify.

In \begin{align*}\cos(a - b) = \cos a \cos b + \sin a \sin b\end{align*}, the difference formula for cosine, you can substitute \begin{align*}a - (- b) = a + b\end{align*} to obtain: \begin{align*}\cos(a + b) = \cos[a - (- b)]\end{align*} or \begin{align*}\cos a \cos (- b) + \sin a \sin(-b)\end{align*}. since \begin{align*}\cos(-b) = \cos b\end{align*} and \begin{align*}\sin (-b) = -\sin b\end{align*}, then \begin{align*}\cos(a + b) = \cos a \cos b - \sin a \sin b\end{align*}, which is the sum formula for cosine.

The sum/difference formulas for cosine can be used to establish other identities:

Example A

Find an equivalent form of \begin{align*}\cos \left (\frac{\pi}{2} - \theta \right )\end{align*} using the cosine difference formula.

Solution:

We know that is a true identity because of our understanding of the sine and cosine curves, which are a phase shift of \begin{align*}\frac{\pi}{2}\end{align*} off from each other.

The cosine formulas can also be used to find exact values of cosine that we weren’t able to find before, such as \begin{align*}15^\circ =(45^\circ - 30^\circ), 75^\circ =(45^\circ + 30^\circ)\end{align*}, among others.

Example B

Find the exact value of \begin{align*}\cos 15^\circ\end{align*}

Solution: Use the difference formula where \begin{align*}a = 45^\circ\end{align*} and \begin{align*}b = 30^\circ\end{align*}.

Example C

Find the exact value of \begin{align*}\cos \frac{5 \pi}{12}\end{align*}, in radians.

Solution: \begin{align*}\cos \frac{5 \pi}{12} = \cos \left (\frac{\pi}{4} + \frac{\pi}{6} \right )\end{align*}, notice that \begin{align*}\frac{\pi}{4} = \frac{3 \pi}{12}\end{align*} and \begin{align*}\frac{\pi}{6} = \frac{2 \pi}{12}\end{align*}

Guided Practice

1. Find the exact value for \begin{align*}\cos \frac{5 \pi}{12}\end{align*}

2. Find the exact value for \begin{align*}\cos \frac{7 \pi}{12}\end{align*}

3. Find the exact value for \begin{align*}\cos 345^\circ\end{align*}

Solutions:

1.

2.

3.

Concept Problem Solution

Prior to this Concept, it would seem that your friend was having some fun with you, since he figured you didn't know the cosine difference formula. But now, with this formula in hand, you can readily solve for the difference of the two angles:

Therefore,

\begin{align*}\cos (110^\circ - 80^\circ) = .8659\end{align*}

Explore More

Find the exact value for each cosine expression.

1. \begin{align*}\cos75^\circ\end{align*}
2. \begin{align*}\cos105^\circ\end{align*}
3. \begin{align*}\cos165^\circ\end{align*}
4. \begin{align*}\cos255^\circ\end{align*}
5. \begin{align*}\cos-15^\circ\end{align*}

Write each expression as the cosine of an angle.

1. \begin{align*}\cos96^\circ\cos20^\circ+\sin96^\circ\sin20^\circ\end{align*}
2. \begin{align*}\cos4x\cos3x-\sin4x\sin3x\end{align*}
3. \begin{align*}\cos37^\circ\cos12^\circ+\sin37^\circ\sin12^\circ\end{align*}
4. \begin{align*}\cos59^\circ\cos10^\circ-\sin59^\circ\sin10^\circ\end{align*}
5. \begin{align*}\cos5y\cos2y+\sin5y\sin2y\end{align*}
6. Prove that \begin{align*}\cos(x-\frac{\pi}{4})=\frac{\sqrt{2}}{2}(\cos(x)+\sin(x))\end{align*}
7. If \begin{align*}\cos(x)\cos(y)=\sin(x)\sin(y)\end{align*}, then what does \begin{align*}\cos(x+y)\end{align*} equal?
8. Prove that \begin{align*}\cos(x-\frac{\pi}{2})=\sin(x)\end{align*}
9. Use the fact that \begin{align*}\cos(\frac{\pi}{2}-x)=\sin(x)\end{align*} (shown in examples), to show that \begin{align*}\sin(\frac{\pi}{2}-x)=\cos(x)\end{align*}.
10. Prove that \begin{align*}\cos(x-y)+\cos(x+y)=2\cos(x)\cos(y)\end{align*}.

Answers for Explore More Problems

To view the Explore More answers, open this PDF file and look for section 3.6.

Vocabulary Language: English

Cosine Difference Formula

Cosine Difference Formula

The cosine difference formula states that $cos(A - B) = cosA cosB + sinA sinB$.
cosine sum formula

cosine sum formula

The cosine sum formula states that $cos(A + B) = cosA cosB - sinA sinB$.

Date Created:

Sep 26, 2012

Feb 26, 2015
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the Modality. Click Customize to make your own copy.