<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

26.1: Appendix A: Answers to Selected Problems (3e)

Difficulty Level: At Grade Created by: CK-12

Ch 1: Units and Problem Solving

    1. A person of height \begin{align*}5 \;\mathrm{ft}\end{align*}. \begin{align*}11 \;\mathrm{in}\end{align*}. is \begin{align*}1.80 \;\mathrm{m}\end{align*} tall
    2. The same person is \begin{align*}180 \;\mathrm{cm}\end{align*}
    1. \begin{align*}3 \;\mathrm{seconds} = 1/1200 \;\mathrm{hours}\end{align*}
    2. \begin{align*}3x10^3 \;\mathrm{ms}\end{align*}
  1. \begin{align*}87.5 \;\mathrm{mi/hr}\end{align*}
  2. c. if the person weighs \begin{align*}150 \;\mathrm{lb}\end{align*}. this is equivalent to \begin{align*}668 \;\mathrm{N}\end{align*}
  3. Pascals (Pa), which equals \begin{align*}\;\mathrm{N/m}^2\end{align*}
  4. \begin{align*}168 \;\mathrm{lb}., 76.2 \;\mathrm{kg}\end{align*}
  5. \begin{align*}5 \;\mathrm{mi/hr/s}\end{align*}
  6. \begin{align*}15.13 \;\mathrm{m}\end{align*}
  7. \begin{align*}11.85 \;\mathrm{m}\end{align*}
  8. \begin{align*}89,300 \;\mathrm{mm}\end{align*}
  9. f. \begin{align*}2025 \;\mathrm{mm}^2\end{align*}
  10. b. \begin{align*}196 \;\mathrm{cm}^2\end{align*}
  11. c. \begin{align*} 250 \;\mathrm{cm}^3\end{align*}
  12. \begin{align*}8:1,\end{align*} each side goes up by \begin{align*}2 \;\mathrm{cm}\end{align*}, so it will change by \begin{align*}2^3\end{align*}
  13. \begin{align*}3.5 \times 10^{51}:1\end{align*}
  14. \begin{align*} 72,000 \;\mathrm{km/h}\end{align*}
  15. \begin{align*} 0.75 \;\mathrm{kg/s}\end{align*}
  16. \begin{align*} 8 \times 2^N \;\mathrm{cm}^3/\;\mathrm{sec}\end{align*}; \begin{align*}N\end{align*} is for each second starting with \begin{align*}0\end{align*} seconds for \begin{align*}8 \;\mathrm{cm}^3\end{align*}
  17. About \begin{align*}12\end{align*} million
  18. About \begin{align*}1 \frac{1}{2}\end{align*} trillion \begin{align*}(1.5 \times 10^{12})\end{align*}
  19. \begin{align*}[\mathrm{a}] = \;\mathrm{N/kg} = \;\mathrm{m/s}^2\end{align*}

Ch 2: Energy Conservation

  1. d
  2. (discuss in class)
    1. \begin{align*}5.0 \times 10^5 \;\mathrm{J}\end{align*}
    2. \begin{align*}3.7 \times 10^5 \;\mathrm{J}\end{align*}
    3. Chemical bonds in the food.
    4. \begin{align*}99 \;\mathrm{m/s}\end{align*}
    1. \begin{align*}5.0 \times 10^5 \;\mathrm{J}\end{align*}
    2. \begin{align*}108 \;\mathrm{m/s}\end{align*}
    1. \begin{align*}450,000 \;\mathrm{J}\end{align*}
    2. \begin{align*}22,500 \;\mathrm{J}\end{align*}
    3. \begin{align*}5,625 \;\mathrm{J}\end{align*}
    4. \begin{align*}21.2 \;\mathrm{m/s}\end{align*}
    5. \begin{align*}9.18 \;\mathrm{m}\end{align*}
  3. .
  4. b. \begin{align*}KE = 504,600 \;\mathrm{J}; U_g = 1,058,400 \;\mathrm{J}; E_{total} = 1,563,000 \;\mathrm{J}\end{align*}
    1. \begin{align*}34 \;\mathrm{m/s \ at \ B}; 28 \;\mathrm{m/s \ at \ D}, 40 \;\mathrm{m/s \ at \ E}, 49 \;\mathrm{m/s \ at \ C \ and \ F}; 0 \;\mathrm{m/s \ at \ H}\end{align*}
    2. \begin{align*}96 \;\mathrm{m}\end{align*}
    1. \begin{align*}1.7 \;\mathrm{J}\end{align*}
    2. \begin{align*}1.3 \;\mathrm{m/s}\end{align*}
    3. \begin{align*}0.4 \;\mathrm{J}, 0.63 \;\mathrm{m/s}\end{align*}
    1. \begin{align*}1.2 \;\mathrm{m/s}^2\end{align*}
    2. \begin{align*}130 \;\mathrm{J}\end{align*}
    1. \begin{align*}6750 \;\mathrm{J}\end{align*}
    2. \begin{align*}2.25 \times 10^5 \;\mathrm{J}\end{align*}
    3. \begin{align*}1.5 \times 10^5 \;\mathrm{J/gallon \ of \ gas}\end{align*}
  5. \begin{align*}0.76 \;\mathrm{m}\end{align*}

Ch 3: One-Dimensional Motion

  1. .
  2. .
  3. .
  4. .
    1. Zyan
    2. Ashaan is accelerating because the distance he travels every 0.1 seconds is increasing, so the speed must be increasing
    3. Ashaan
    4. Zyan
    5. Ashaan
  5. .
  6. .
  7. 6 minutes
  8. d. \begin{align*}20 \;\mathrm{meters}\end{align*} e. \begin{align*}40 \;\mathrm{meters}\end{align*} f. \begin{align*}2.67 \;\mathrm{m/s}\end{align*} g. \begin{align*}6 \;\mathrm{m/s}\end{align*} h. Between \begin{align*}t = 15 \;\mathrm{s}\end{align*} and \begin{align*}t = 20\end{align*} sec because your position goes from \begin{align*}x = 30 \;\mathrm{m}\end{align*} to \begin{align*}x = 20\mathrm{m}\end{align*}. i. You made some sort of turn
    1. \begin{align*}7.7 \;\mathrm{m/s}^2\end{align*}
    2. \begin{align*}47 \;\mathrm{m}, 150 \;\mathrm{feet}\end{align*}
    3. \begin{align*}34 \;\mathrm{m/s}\end{align*}
    1. \begin{align*}1.22 \;\mathrm{m}\end{align*}
    2. \begin{align*}4.9 \;\mathrm{m/s}\end{align*}
    3. \begin{align*}2.46 \;\mathrm{m/s}\end{align*}
    4. \begin{align*}-4.9 \;\mathrm{m/s}\end{align*}
  9. b. 1 second c. at 2 seconds d. \begin{align*}4\mathrm{m}\end{align*}
    1. \begin{align*}250 \;\mathrm{m}\end{align*}
    2. \begin{align*}13 \;\mathrm{m/s}, -13 \;\mathrm{m/s}\end{align*}
    3. \begin{align*}14 \;\mathrm{s}\end{align*} for round trip
  10. Let’s say we can jump \begin{align*}20 \;\mathrm{feet} \ (6.1 \;\mathrm{m})\end{align*} in the air. ☺ Then, on the moon, we can jump \begin{align*}36.5 \;\mathrm{m}\end{align*} straight up.
  11. \begin{align*}-31\mathrm{m/s}^2\end{align*}
    1. \begin{align*}23 \;\mathrm{m/s}\end{align*}
    2. 3.6 seconds
    3. \begin{align*}28 \;\mathrm{m}\end{align*}
    4. \begin{align*}45\mathrm{m}\end{align*}
    1. \begin{align*}25 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}30 \;\mathrm{m}\end{align*}
    3. \begin{align*}2.5 \;\mathrm{m/s}^2\end{align*}
  12. \begin{align*}2 \;\mathrm{m/s}^2\end{align*}
    1. \begin{align*}v_0 = 0\end{align*}
    2. \begin{align*}10 \;\mathrm{m/s}^2\end{align*}
    3. \begin{align*}- 10 \;\mathrm{m/s}^2\end{align*}
    4. \begin{align*}60 \;\mathrm{m}\end{align*}
    1. \begin{align*}0.3 \;\mathrm{m/s}^2\end{align*}
    2. \begin{align*}0.5 \;\mathrm{m/s}\end{align*}

Ch 4: Two-Dimensional and Projectile Motion

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
    1. \begin{align*}13 \;\mathrm{m}\end{align*}
    2. \begin{align*}41\end{align*} degrees
    3. \begin{align*}v_y = 26 \;\mathrm{m/s}; v_x = 45 \;\mathrm{m/s}\end{align*}
    4. \begin{align*}56\end{align*} degrees, \begin{align*}14 \;\mathrm{m/s}\end{align*}
  7. .
  8. \begin{align*}32 \;\mathrm{m}\end{align*}
    1. \begin{align*}0.5 \;\mathrm{s}\end{align*}
    2. \begin{align*}0.8 \;\mathrm{m/s}\end{align*}
  9. \begin{align*}104 \;\mathrm{m}\end{align*}
  10. \begin{align*}t = 0.60 \;\mathrm{s}, 1.8 \;\mathrm{m}\end{align*} below target
  11. \begin{align*}28 \;\mathrm{m}\end{align*}.
    1. \begin{align*}3.5 \;\mathrm{s}\end{align*}.
    2. \begin{align*}35 \;\mathrm{m}; 15 \;\mathrm{m}\end{align*}
  12. \begin{align*}40 \;\mathrm{m}; 8.5 \;\mathrm{m}\end{align*}
  13. \begin{align*}1.3\end{align*} seconds, \begin{align*}7.1\end{align*} meters
  14. \begin{align*}50 \;\mathrm{m}; v_{0y} = 30 \;\mathrm{m/s}; 50^0\end{align*}; on the way up
  15. \begin{align*}4.4 \;\mathrm{s}\end{align*}
  16. \begin{align*}19^\circ\end{align*}
  17. \begin{align*}0.5 \;\mathrm{s}\end{align*}
  18. \begin{align*}2.3 \;\mathrm{m/s}\end{align*}
  19. \begin{align*}6 \;\mathrm{m}\end{align*}
  20. \begin{align*}1.4\end{align*} seconds
    1. yes
    2. \begin{align*}14 \;\mathrm{m/s}\end{align*} @ \begin{align*}23\end{align*} degrees from horizontal
  21. \begin{align*}22 \;\mathrm{m/s}\end{align*} @ \begin{align*}62\end{align*} degrees

Ch 5: Newton’s Laws

  1. .
  2. .
  3. .
  4. Zero; weight of the hammer minus the air resistance.
  5. \begin{align*}2\end{align*} forces
  6. \begin{align*}1\end{align*} force
  7. No
  8. The towel’s inertia resists the acceleration
    1. Same distance
    2. You go farther
    3. Same amount of force
  9. .
  10. a. \begin{align*}98 \;\mathrm{N}\end{align*} b. \begin{align*}98\;\mathrm{N}\end{align*}
  11. .
  12. \begin{align*}32\;\mathrm{N}\end{align*}
  13. \begin{align*}5.7 \;\mathrm{m/s}^2\end{align*}
  14. .
  15. .
  16. \begin{align*}F_x = 14 \;\mathrm{N}, F_y = 20\;\mathrm{N}\end{align*}
  17. Left picture: \begin{align*}F = 23\mathrm{N} \ 98^\circ\end{align*}, right picture:\begin{align*}F = 54 \;\mathrm{N} \ 5^\circ\end{align*}
  18. \begin{align*}3 \;\mathrm{m/s}^2 \;\mathrm{east}\end{align*}
  19. \begin{align*}4 \;\mathrm{m/s}^2; 22.5^\circ \;\mathrm{NE}\end{align*}
  20. \begin{align*}0.51\end{align*}
  21. \begin{align*}0.2\end{align*}
  22. The rope will not break because his weight of \begin{align*}784\;\mathrm{N}\end{align*} is distributed between the two ropes.
  23. Yes, because his weight of \begin{align*}784\;\mathrm{N}\end{align*} is greater than what the rope can hold.
  24. Mass is \begin{align*}51 \;\mathrm{kg}\end{align*} and weight is \begin{align*}82\;\mathrm{N}\end{align*}
    1. While accelerating down
    2. \begin{align*}686\;\mathrm{N}\end{align*}
    3. \begin{align*}826\;\mathrm{N}\end{align*}
    1. \begin{align*}390\;\mathrm{N}\end{align*}
    2. \begin{align*}490\;\mathrm{N}\end{align*}
  25. \begin{align*}0.33\end{align*}
  26. \begin{align*}3.6 \;\mathrm{kg}\end{align*}
  27. \begin{align*}\mathrm{g} \sin \theta\end{align*}
  28. b.\begin{align*} 20\;\mathrm{N}\end{align*} c. \begin{align*}4.9\;\mathrm{N}\end{align*} d. \begin{align*}1.63 \;\mathrm{kg}\end{align*} e. Eraser would slip down the wall
    1. \begin{align*}1450\;\mathrm{N}\end{align*}
    2. \begin{align*}5600\;\mathrm{N}\end{align*}
    3. \begin{align*}5700\;\mathrm{N}\end{align*}
    4. Friction between the tires and the ground
    5. Fuel, engine, or equal and opposite reaction
  29. b. \begin{align*}210\;\mathrm{N}\end{align*} c. no, the box is flat so the normal force doesn’t change d. \begin{align*}2.8 \;\mathrm{m/s}^2\end{align*} e.\begin{align*} 28 \;\mathrm{m/s}\end{align*} f. no g. \begin{align*}69\;\mathrm{N}\end{align*} h. \begin{align*}57\;\mathrm{N}\end{align*} i. \begin{align*}40\;\mathrm{N}\end{align*} j. \begin{align*}0.33\end{align*} k. \begin{align*}0.09\end{align*}
  30. .
    1. zero
    2. \begin{align*}-kx0\end{align*}
  31. b. \begin{align*}f_1= \mu_km_1\mathrm{g} \cos\theta; f_2 = \mu_km_2\mathrm{g} \cos\theta\end{align*} c. Ma d. \begin{align*}T_A= (m_1 + m_2) (a + \mu \cos\theta)\end{align*} and \begin{align*}T_B = m_2a + \mu m_2 \cos\theta\end{align*} e. Solve by using \begin{align*}d = 1/2at^2\end{align*} and substituting \begin{align*}h\end{align*} for \begin{align*}d\end{align*}
    1. Yes, because it is static and you know the angle and \begin{align*}m_1\end{align*}
    2. Yes, \begin{align*}T_A\end{align*} and the angle gives you \begin{align*}m_1\end{align*} and the angle and \begin{align*}T_C\end{align*} gives you \begin{align*}m_2, m_1 = T_A \cos 25/\mathrm{g}\end{align*} and \begin{align*}m_2 = T_C \cos 30/\mathrm{g}\end{align*}
  32. a. \begin{align*}3\end{align*} seconds d. \begin{align*}90 \;\mathrm{m}\end{align*}
  33. .
  34. .
  35. .
    1. \begin{align*}1.5 \;\mathrm{N}; 2.1 \;\mathrm{N}; 0.71\end{align*}

Ch 6: Centripetal Forces

  1. .
  2. .
  3. .
  4. .
    1. \begin{align*}100 \;\mathrm{N}\end{align*}
    2. \begin{align*}10 \;\mathrm{m/s}^2\end{align*}
    1. \begin{align*}25 \;\mathrm{N}\end{align*} towards her
    2. \begin{align*}25 \;\mathrm{N}\end{align*} towards you
    1. \begin{align*}14.2 \;\mathrm{m/s}^2\end{align*}
    2. \begin{align*}7.1 \times 10^3 \;\mathrm{N}\end{align*}
    3. friction between the tires and the road
  5. \begin{align*}.0034\mathrm{g}\end{align*}
    1. \begin{align*}6.2 \times 10^5\;\mathrm{m/s}^2\end{align*}
    2. The same as a.
  6. \begin{align*}3.56 \times 10^{22}\mathrm{N}\end{align*}
  7. \begin{align*}4.2 \times 10^{-7} \;\mathrm{N}\end{align*}; very small force
  8. \begin{align*}g = 9.8 \;\mathrm{m/s}^2\end{align*}; you’ll get close to this number but not exactly due to some other small effects
    1. \begin{align*}4 \times 10^{26} \;\mathrm{N}\end{align*}
    2. gravity
    3. \begin{align*}2 \times 10^{41} \;\mathrm{kg}\end{align*}
  9. \begin{align*}.006 \;\mathrm{m/s}^2\end{align*}
    1. \begin{align*}.765\end{align*}
    2. \begin{align*}4880 \;\mathrm{N}\end{align*}
    1. \begin{align*}\sim 10^{-8} \;\mathrm{N}\end{align*} very small force
    2. Your pencil does not accelerate toward you because the frictional force on your pencil is much greater than this force.
  10. a. \begin{align*}4.23 \times 10^7\mathrm{m}\end{align*} b. \begin{align*}6.6 \ R_e\end{align*} d. The same, the radius is independent of mass
  11. \begin{align*}1.9 \times 10^7\mathrm{m}\end{align*}
  12. You get two answers for \begin{align*}r\end{align*}, one is outside of the two stars one is between them, that’s the one you want, \begin{align*}1.32 \times 10^{10}\mathrm{m}\end{align*} from the larger star.
  13. .
  14. .
    1. \begin{align*}v = 28\;\mathrm{m/s}\end{align*}
    2. \begin{align*}v-\end{align*}down, \begin{align*}a-\end{align*}right
    3. \begin{align*}f-\end{align*}right
    4. Yes, \begin{align*}640\mathrm{N}\end{align*}

Ch 7: Momentum Conservation

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. \begin{align*}37.5 \;\mathrm{m/s}\end{align*}
  9. \begin{align*}v_1 = 2v_2\end{align*}
    1. \begin{align*}24 \frac{kg-m}{5}\end{align*}
    2. \begin{align*}0.364 \;\mathrm{m/s}\end{align*}
    3. \begin{align*}22 \frac{kg-m}{5}\end{align*}
    4. \begin{align*}109 \;\mathrm{N}\end{align*}
    5. \begin{align*}109 \;\mathrm{N}\end{align*} due to Newton’s third law
  10. \begin{align*}2.0 \;\mathrm{kg}, 125 \;\mathrm{m/s}\end{align*}
  11. \begin{align*}21 \;\mathrm{m/s}\end{align*} to the left
  12. \begin{align*}3250 \;\mathrm{N}\end{align*}
    1. \begin{align*}90 \;\mathrm{sec}\end{align*}
    2. \begin{align*}1.7 \times 10^5 \;\mathrm{sec}\end{align*}
    1. \begin{align*}60 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}.700 \;\mathrm{sec}\end{align*}
    3. yes, \begin{align*}8.16 \;\mathrm{m}\end{align*}
  13. \begin{align*}0.13 \;\mathrm{m/s}\end{align*} to the left
    1. \begin{align*}11000 \;\mathrm{N}\end{align*} to the left
    2. tree experienced same average force of \begin{align*}11000 \;\mathrm{N}\end{align*} but to the right
    3. \begin{align*}2500 \;\mathrm{lb}\end{align*}.
    4. about \begin{align*}2.5\end{align*} “g”s of acceleration
    1. no change
    2. the last two cars
    1. \begin{align*}0.00912 \;\mathrm{s}\end{align*}
    1. \begin{align*}0.0058 \;\mathrm{m/s}^2\end{align*}
    2. \begin{align*}3.5 \;\mathrm{m/s}^2\end{align*}
    1. \begin{align*} 15 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}49^\circ \;\mathrm{S}\end{align*} of \begin{align*}\;\mathrm{E}\end{align*}
  14. b. \begin{align*}4.6 \;\mathrm{m/s} \ 68^\circ\end{align*}

Ch 8: Energy & Force

  1. .
  2. .
  3. .
  4. .
  5. .
    1. \begin{align*}7.18 \times 10^9 \;\mathrm{J}\end{align*}
    2. \begin{align*}204 \;\mathrm{m/s}\end{align*}
    1. \begin{align*}34 \;\mathrm{m/s}\end{align*} @ \begin{align*}B; 28 \;\mathrm{m/s}\end{align*} @ \begin{align*}D; 40 \;\mathrm{m/s}\end{align*} @ \begin{align*}E; 49 \;\mathrm{m/s}\end{align*} @ \begin{align*}C\end{align*} and F; \begin{align*}0 \;\mathrm{m/s}\end{align*} @ \begin{align*}H\end{align*}
    2. \begin{align*}30 \;\mathrm{m}\end{align*}
    3. Yes, it makes the loop
  6. a. \begin{align*}2.3 \;\mathrm{m/s}\end{align*} c. No, the baby will not clear the hill.
    1. \begin{align*}29,500 \;\mathrm{J}\end{align*}
    2. \begin{align*}13 \;\mathrm{m}\end{align*}
  7. .
    1. \begin{align*}86\;\mathrm{m}\end{align*}
    2. \begin{align*}220\;\mathrm{m}\end{align*}
    1. \begin{align*}48.5 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}128 \;\mathrm{N}\end{align*}
  8. \begin{align*}0.32 \;\mathrm{m/s}\end{align*} each
    1. \begin{align*}10 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}52\;\mathrm{m}\end{align*}
    1. \begin{align*}1.1 \times 10^4 \;\mathrm{N/m}\end{align*}
    2. \begin{align*}2\;\mathrm{m}\end{align*} above the spring
  9. \begin{align*}96\end{align*}%
  10. .
    1. \begin{align*}.008\;\mathrm{m}\end{align*}
    2. 5.\begin{align*}12^\circ\end{align*}
  11. \begin{align*}8 \;\mathrm{m/s}\end{align*} same direction as the cue ball and \begin{align*}0 \;\mathrm{m/s}\end{align*}
  12. \begin{align*}\mathrm{v}_{golf} =-24.5 \;\mathrm{m/s}; \mathrm{vpool} = 17.6 \;\mathrm{m/s}\end{align*}
  13. \begin{align*}2.8\;\mathrm{m}\end{align*}
    1. \begin{align*}0.57 \;\mathrm{m/s}\end{align*}
    2. Leonora’s
    3. \begin{align*}617 \;\mathrm{J}\end{align*}
    1. \begin{align*}19.8 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}8.8 \;\mathrm{m/s}\end{align*}
    3. \begin{align*}39.5\;\mathrm{m}\end{align*}
    1. \begin{align*}89 \;\mathrm{kW}\end{align*}
    2. \begin{align*}0.4\end{align*}
    3. \begin{align*}15.1 \;\mathrm{m/s}\end{align*}
  14. \begin{align*}43.8 \;\mathrm{m/s}\end{align*}
  15. .
  16. .
  17. .
    1. \begin{align*}3.15 \times 10^5 \;\mathrm{J}\end{align*}
    2. \begin{align*}18.0 \;\mathrm{m/s}\end{align*}
    3. \begin{align*}2.41\;\mathrm{m}\end{align*}
    4. \begin{align*}7900 \;\mathrm{J}\end{align*}
    1. \begin{align*}v_0 /14\end{align*}
    2. \begin{align*}mv_{0}{^{2}}/8\end{align*}
    3. \begin{align*}7mv_{0}{^{2}}/392\end{align*}
    4. \begin{align*}71\end{align*}%

Ch 9: Rotational Motion

  1. .
    1. \begin{align*}9.74 \times 10^{37} \;\mathrm{kg \ m}2\end{align*}
    2. \begin{align*}1.33 \times 10^{47} \;\mathrm{kg \ m}^2\end{align*}
    3. \begin{align*} 0.5 \;\mathrm{kg \ m}^2\end{align*}
    4. \begin{align*}0.28 \;\mathrm{kg \ m}^2\end{align*}
    5. \begin{align*}0.07 \;\mathrm{kg \ m}^2\end{align*}
  2. a. True, all rotate \begin{align*}2\pi\end{align*} for \begin{align*}86,400 ;\mathrm{sec}\end{align*} which is 24 hours, b. True, \begin{align*}\omega = 2\pi/\mathrm{t}\end{align*} and \begin{align*}t=86,400 \;\mathrm{s}\end{align*} f. True, \begin{align*}L\end{align*} is the same g. \begin{align*}L = I\omega\end{align*} and \begin{align*}I = 2/5 \;\mathrm{mr}^2\end{align*} h. True, \begin{align*}K = \frac{1}{2} I\omega^2\end{align*} & \begin{align*}I = 2/5 \;\mathrm{mr}^2 \;\mathrm{sub-in} \ K = 1/5 \;\mathrm{mr}^2\omega^2\end{align*} i. True, \begin{align*}K = \frac{1}{2} I\omega^2\end{align*} & \begin{align*}I = \;\mathrm{mr}^2 \;\mathrm{sub-in} \ K = \frac{1}{2} mr^2\omega^2\end{align*}
    1. \begin{align*}250 \;\mathrm{rad}\end{align*}
    2. \begin{align*}40 \;\mathrm{rad}\end{align*}
    3. \begin{align*}25 \;\mathrm{rad/s}\end{align*}
    4. Force applied perpendicular to radius allows \begin{align*}\alpha\end{align*}
    5. \begin{align*}0.27 \;\mathrm{kg \ m}^2\end{align*},
    6. \begin{align*}K^5 = 84 \;\mathrm{J}\end{align*} and \begin{align*}K^10 = 340 \;\mathrm{J}\end{align*}
  3. .
  4. Moment of inertia at the end \begin{align*}1/3 \;\mathrm{ML}^2\end{align*} at the center \begin{align*}1/12 \;\mathrm{ML}^2\end{align*}, angular momentum, \begin{align*}L = I\omega\end{align*} and torque, \begin{align*}\tau = I\alpha\end{align*} change the in the same way
  5. .
  6. Lower
  7. Iron ball
    1. \begin{align*}200 \;\mathrm{N}\end{align*} team
    2. \begin{align*}40 \;\mathrm{N}\end{align*}
    3. \begin{align*}0.02 \;\mathrm{rad/s}^2\end{align*}
    4. \begin{align*}25 \;\mathrm{s}\end{align*}
    1. Coin with the hole
    2. Coin with the hole
    1. weight
    2. \begin{align*}19.6 \;\mathrm{N}\end{align*}
    3. plank’s length \begin{align*}(0.8\mathrm{m})\end{align*} left of the pivot
    4. \begin{align*}15.7 \;\mathrm{N \ m}\end{align*},
    5. Ba. weight, Bb. \begin{align*}14.7 \;\mathrm{N}\end{align*}, Bc. plank’s length \begin{align*}(0.3\mathrm{m})\end{align*} left of the pivot, Bd. \begin{align*}4.4 \;\mathrm{N \ m}\end{align*}, Ca. weight, Cb. \begin{align*}13.6\;\mathrm{N}\end{align*}, Cc. plank’s length \begin{align*}(1.00 \;\mathrm{m})\end{align*} right of the pivot, Cd. \begin{align*}13.6 \;\mathrm{N \ m}\end{align*}, f) \begin{align*}6.5 \;\mathrm{N \ m \ CC}\end{align*}, g) no, net torque doesn’t equal zero
    1. \begin{align*}7.27 \times 10^{-6} \;\mathrm{Hz}\end{align*}
    2. \begin{align*}7.27 \;\mathrm{Hz}\end{align*}
    1. \begin{align*}100 \;\mathrm{Hz}\end{align*}
    2. \begin{align*}1.25 \times 10^5 \;\mathrm{J}\end{align*}
    3. \begin{align*}2500 \;\mathrm{J-s}\end{align*}
    4. \begin{align*}12,500 \;\mathrm{m-N}\end{align*}
  8. \begin{align*}28 \;\mathrm{rev/sec}\end{align*}
  9. \begin{align*}2300\;\mathrm{N}\end{align*}
  10. b. \begin{align*}771\;\mathrm{N}, 1030\;\mathrm{N}\end{align*} c. \begin{align*}554 \;\mathrm{kgm}^2\end{align*} d. \begin{align*}4.81\mathrm{rad/sec}^2\end{align*}
    1. \begin{align*}300\;\mathrm{N}\end{align*}
    2. \begin{align*}240N, -22\;\mathrm{N}\end{align*}
    3. \begin{align*}.092\end{align*}
    1. \begin{align*}2280\;\mathrm{N}\end{align*}
    2. \begin{align*}856 \;\mathrm{n}\end{align*} toward beam, \begin{align*}106\;\mathrm{N}\end{align*} down
    3. \begin{align*}425 \;\mathrm{kgm}^2\end{align*}
    4. \begin{align*}3.39 \;\mathrm{rad/sec}^2\end{align*}
    1. \begin{align*}-1.28 \;\mathrm{Nm}\end{align*}
    2. \begin{align*}\;\mathrm{CCW}\end{align*}
  11. a. \begin{align*}1411 \;\mathrm{kg}\end{align*} c. \begin{align*}17410\;\mathrm{N}\end{align*} d. angular acc goes down as arm moves to vertical

Ch 10: Simple Harmonic Motion

    1. Buoyant force and gravity
    2. \begin{align*}T = 6 \;\mathrm{s}, f = 1/6 \;\mathrm{Hz}\end{align*}
    1. \begin{align*}9.8 \times 10^5 \;\mathrm{N/m}\end{align*}
    2. \begin{align*}0.5 \;\mathrm{mm}\end{align*}
    3. \begin{align*}22 \;\mathrm{Hz}\end{align*}, no.
  1. \begin{align*}3.2 \times 10^3 \;\mathrm{N/m}\end{align*}
  2. a. \begin{align*}110 \;\mathrm{N/m}\end{align*} d. \begin{align*}v(t)=(25) \cos(83\mathrm{t})\end{align*}
  3. .
  4. .
    1. \begin{align*}0.0038 \;\mathrm{s}\end{align*}
    2. \begin{align*}0.0038 \;\mathrm{s}\end{align*}
  5. .
  6. .
  7. \begin{align*}4\end{align*} times
  8. \begin{align*}0.04 \;\mathrm{m}\end{align*}
    1. \begin{align*}16 \;\mathrm{Hz}\end{align*}
    2. \begin{align*}16\end{align*} complete cycles but \begin{align*}32\end{align*} times up and down, \begin{align*}315\end{align*} complete cycles but \begin{align*}630\end{align*} times up and down
    3. \begin{align*}0.063 \;\mathrm{s}\end{align*}
    1. \begin{align*}24.8 \;\mathrm{J},165 \;\mathrm{N}, 413 \;\mathrm{m/s}^2\end{align*}
    2. \begin{align*}11.1\mathrm{m/s}, 0, 0\end{align*}
    3. \begin{align*}6.2 \;\mathrm{J}, 18.6 \;\mathrm{J}, 9.49 \;\mathrm{m/s}, 82.5 \;\mathrm{N}, 206 \;\mathrm{m/s}^2\end{align*}
    4. \begin{align*}.169 \;\mathrm{sec}, 5.9 \;\mathrm{Hz}\end{align*}
  9. b. \begin{align*}.245 \;\mathrm{J}\end{align*} c. \begin{align*}1.40\mathrm{m/s}\end{align*} d. \begin{align*}1.00 \;\mathrm{m/s}\end{align*} f. \begin{align*}2.82 \;\mathrm{N}\end{align*} g. \begin{align*}3.10 \;\mathrm{N}\end{align*}

Ch 11: Wave Motion and Sound

  1. \begin{align*}390 \;\mathrm{Hz}\end{align*}
    1. \begin{align*}4 \;\mathrm{Hz}\end{align*}
    2. It was being driven near its resonant frequency.
    3. \begin{align*}8 \;\mathrm{Hz}, 12 \;\mathrm{Hz}\end{align*}
    4. (Note that earthquakes rarely shake at more than \begin{align*}6 \;\mathrm{Hz}\end{align*}).
  2. .
  3. .
    1. \begin{align*}7\end{align*} nodes including the \begin{align*}2\end{align*} at the ends
    2. \begin{align*}3.6 \;\mathrm{Hz}\end{align*}
  4. \begin{align*}1.7 \;\mathrm{km}\end{align*}
    1. \begin{align*}1.7 \;\mathrm{cm}\end{align*}
    2. \begin{align*}17 \;\mathrm{m}\end{align*}
    1. \begin{align*}4.3 \times 10^{14} \;\mathrm{Hz}\end{align*}
    2. \begin{align*}2.3 \times 10^{-15} \;\mathrm{s} -\end{align*} man that electron is moving fast
    1. \begin{align*}2.828 \;\mathrm{m}\end{align*}
    2. \begin{align*}3.352 \;\mathrm{m}\end{align*}
    3. \begin{align*}L = 1/4 \ \lambda\end{align*} so it would be difficult to receive the longer wavelengths.
  5. Very low frequency
  6. b. Same as closed at both ends
  7. .
  8. \begin{align*}1.9 \;\mathrm{Hz}\end{align*} or \begin{align*}2.1 \;\mathrm{Hz}\end{align*}.
  9. \begin{align*}0.53 \;\mathrm{m}\end{align*}
  10. \begin{align*}2.2 \;\mathrm{m}, 36 \;\mathrm{Hz}; 1.1 \;\mathrm{m}, 73 \;\mathrm{Hz}; 0.733 \;\mathrm{m}, 110 \;\mathrm{Hz}; 0.55 \;\mathrm{m}, 146 \;\mathrm{Hz}\end{align*}
  11. \begin{align*}430\;\mathrm{Hz}; 1.3 \times 10^3 \;\mathrm{Hz}; 2.1 \times 10^3 \;\mathrm{Hz}; 3.0 \times 10^3 \;\mathrm{Hz};\end{align*}
    1. The tube closed at one end will have a longer fundamental wavelength and a lower frequency.
    2. If the temperature increases the wavelength will not change, but the frequency will increase accordingly.
  12. struck by bullet first.
  13. \begin{align*}80 \;\mathrm{Hz}; 0.6 \;\mathrm{m}\end{align*}
    1. \begin{align*}0.457 \;\mathrm{m}\end{align*}
    2. \begin{align*}0.914 \;\mathrm{m}\end{align*}
    3. \begin{align*}1.37 \;\mathrm{m}\end{align*}
  14. \begin{align*}2230 \;\mathrm{Hz}; 2780 \;\mathrm{Hz}; 2970 \;\mathrm{Hz}\end{align*}
  15. \begin{align*}498 \;\mathrm{Hz}\end{align*}
  16. \begin{align*}150 \;\mathrm{m/s}\end{align*}

Ch 12: Electricity

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. b. \begin{align*}1350 \;\mathrm{N}\end{align*} c. \begin{align*}1350 \;\mathrm{N}\end{align*}
    1. \begin{align*}1.1 \times 10^9 \;\mathrm{N/C}\end{align*}
    2. \begin{align*}9000 \;\mathrm{N}\end{align*}
  12. \begin{align*}F_g = 1.0 \times 10^{-47} \;\mathrm{N}\end{align*} and \begin{align*}F_e = 2.3 \times 10^{-8} \;\mathrm{N}\end{align*}. The electric force is \begin{align*}39\end{align*} orders of magnitudes bigger.
  13. \begin{align*}1.0 \times 10^{-4} C\end{align*}
  14. .
  15. a. down b. Up \begin{align*}16c, 5.5 \times 10^{11} \;\mathrm{m/s}^2\end{align*} e. \begin{align*}2.9 \times 10^8 \;\mathrm{m/s}^2\end{align*}
    1. Toward the object
    2. \begin{align*}3.6 \times 10^4 \;\mathrm{N/C}\end{align*} to the left with a force of \begin{align*}2.8 \times 10^{-7} \;\mathrm{N}\end{align*}
  16. Twice as close to the smaller charge, so \begin{align*}2 \;\mathrm{m}\end{align*} from \begin{align*}12\mu \mathrm{C}\end{align*} charge and \begin{align*}1 \;\mathrm{m}\end{align*} from \begin{align*}3\mu \mathrm{C}\end{align*} charge.
  17. \begin{align*}0.293 \;\mathrm{N}\end{align*} and at \begin{align*}42.5^\circ\end{align*}
  18. \begin{align*}624 \;\mathrm{N/C}\end{align*} and at an angle of \begin{align*}-22.4^\circ\end{align*} from the \begin{align*}+x-\end{align*}axis.
    1. \begin{align*}7500\mathrm{V}\end{align*}
    2. \begin{align*}1.5 \;\mathrm{m/s}\end{align*}
    1. \begin{align*}6.4 \times 10^{-17}\;\mathrm{N}\end{align*}
    2. \begin{align*}1300\mathrm{V}\end{align*}
    3. \begin{align*}2.1 \times 10 ^{-16} \;\mathrm{J}\end{align*}
    4. \begin{align*}2.2 \times 10^7 \;\mathrm{m/s}\end{align*}
  19. b. \begin{align*}0.25\mathrm{m}\end{align*} c. \begin{align*}F_T = 0.022\;\mathrm{N}\end{align*} d. \begin{align*}0.37 \mu \mathrm{C}\end{align*}

Ch 13: Electric Circuits – Batteries and Resistors

    1. \begin{align*}4.5\mathrm{C}\end{align*}
    2. \begin{align*}2.8 \times 10^{19}\end{align*} electrons
    1. \begin{align*}0.11 \;\mathrm{A}\end{align*}
    2. \begin{align*}1.0 \;\mathrm{W}\end{align*}
    3. \begin{align*}2.5 \times 10^{21}\end{align*} electrons
    4. \begin{align*}3636 \;\mathrm{W}\end{align*}
    1. \begin{align*}192 \ \Omega\end{align*}
    2. \begin{align*}0.42 \;\mathrm{W}\end{align*}
    1. \begin{align*}5.4 \;\mathrm{mV}\end{align*}
    2. \begin{align*}1.4 \times 10^{-8} \;\mathrm{A}\end{align*}
    3. \begin{align*}7.3 \times 10^{-11} \;\mathrm{W}\end{align*}, not a lot
    4. \begin{align*}2.6 \times 10^{-7} \;\mathrm{J}\end{align*}
  1. left = brighter, right = longer
    1. \begin{align*}224 \;\mathrm{V}\end{align*}
    2. \begin{align*}448 \;\mathrm{W}\end{align*}
    3. \begin{align*}400 \;\mathrm{W}\end{align*} by \begin{align*}100 \ \Omega\end{align*} and \begin{align*}48 \;\mathrm{W}\end{align*} by \begin{align*}12 \ \Omega\end{align*}
  2. b. \begin{align*}8.3 \;\mathrm{W}\end{align*}
  3. \begin{align*}0.5\mathrm{A}\end{align*}
  4. .
  5. \begin{align*}0.8\mathrm{A}\end{align*} and the \begin{align*}50 \ \Omega\end{align*} on the left
    1. \begin{align*}0.94 \;\mathrm{A}\end{align*}
    2. \begin{align*}112 \;\mathrm{W}\end{align*}
    3. \begin{align*}0.35 \;\mathrm{A}\end{align*}
    4. \begin{align*}0.94 \;\mathrm{A}\end{align*}
    5. \begin{align*}50, 45, 75 \ \Omega\end{align*}
    6. both \begin{align*}50 \ \Omega\end{align*} resistors are brightest, then \begin{align*}45 \ \Omega\end{align*}, then \begin{align*}75 \ \Omega\end{align*}
    1. \begin{align*}0.76 \;\mathrm{A}\end{align*}
    2. \begin{align*}7.0 \;\mathrm{W}\end{align*}
  6. b. \begin{align*}1000 \;\mathrm{W}\end{align*}
  7. .
    1. \begin{align*}9.1 \ \Omega\end{align*}
    2. \begin{align*}29.1 \ \Omega\end{align*}
    3. \begin{align*}10.8 \ \Omega\end{align*}
    4. \begin{align*} 26.8 \ \Omega\end{align*}
    5. \begin{align*}1.8\mathrm{A}\end{align*}
    6. \begin{align*}21.5\mathrm{V}\end{align*}
    7. \begin{align*}19.4\mathrm{V}\end{align*}
    8. \begin{align*}6.1\mathrm{V}\end{align*}
    9. \begin{align*}0.24\mathrm{A}\end{align*}
    10. \begin{align*}16 \;\mathrm{kW}\end{align*}
    1. \begin{align*}3.66 \ \Omega\end{align*}
    2. \begin{align*}0.36\mathrm{A}\end{align*}
    3. \begin{align*}1.32 \;\mathrm{V}\end{align*}
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
    1. \begin{align*}10\mathrm{V}\end{align*}

Ch 14: Magnetism

  1. No: if \begin{align*}v = 0\end{align*} then \begin{align*}F = 0\end{align*}; yes: \begin{align*}F = qE\end{align*}
  2. .
  3. .
    1. Into the page
    2. Down the page
    3. Right
  4. Both pointing away from north
  5. .
  6. .
  7. \begin{align*}7.6 \;\mathrm{T}\end{align*}, south
  8. Down the page; \begin{align*}60 \;\mathrm{N}\end{align*}
    1. To the right, \begin{align*}1.88 \times 10^4 \;\mathrm{N}\end{align*}
    2. \begin{align*}91.7 \;\mathrm{m/s}\end{align*}
    3. It should be doubled
  9. East \begin{align*}1.5 \times 10^4 \;\mathrm{A}\end{align*}
  10. \begin{align*}0.00016 \;\mathrm{T}\end{align*}; if CCW motion, B is pointed into the ground.
  11. \begin{align*}1.2 \times 105 \;\mathrm{V}\end{align*}, counterclockwise
    1. \begin{align*}15 \;\mathrm{V}\end{align*}
    2. Counter-clockwise
    1. \begin{align*}2 \times 10^{-5} \;\mathrm{T}\end{align*}
    2. Into the page
    3. \begin{align*}2.8 \;\mathrm{N/m}\end{align*}
    4. CW
    1. \begin{align*}2.42 \times 10^8 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}9.69 \times 10^{-12} \;\mathrm{N}\end{align*}
    3. \begin{align*}.0055 \;\mathrm{m}\end{align*}
  12. E/B
    1. \begin{align*}8 \times 10^{-7} \;\mathrm{T}\end{align*}
    2. \begin{align*}1.3 \times 10^{-6} \;\mathrm{C}\end{align*}
    1. \begin{align*}0 .8 \;\mathrm{V}\end{align*}
    2. CCW
    3. \begin{align*}.064 \;\mathrm{N}\end{align*}
    4. \begin{align*}.16 \;\mathrm{N/C}\end{align*}
    5. \begin{align*}.13 \;\mathrm{w}\end{align*}
  13. a. \begin{align*}1.11 \times 10^8 \;\mathrm{m/s}\end{align*} b. \begin{align*}9.1 \times 10^{-30} \;\mathrm{N} < < 6.4 \times 10^{-14} \;\mathrm{N}\end{align*} d. \begin{align*}.00364 \;\mathrm{T}\end{align*} e. \begin{align*}.173 \;\mathrm{m}\end{align*} f. \begin{align*}7.03 \times 1016 \;\mathrm{m/s}^2\end{align*} g. \begin{align*}3.27^\circ\end{align*}
  14. \begin{align*}19.2 \;\mathrm{V}\end{align*}
    1. \begin{align*}8.39 \times 10^7 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}2.68 \times 10^{-13} \;\mathrm{N}, -y\end{align*}
    3. \begin{align*}2.95 \times 10^17 \;\mathrm{m/s}^2\end{align*}
    4. \begin{align*}.00838 \;\mathrm{m}\end{align*}
    5. \begin{align*}1.68 \times 10^6 \;\mathrm{N/C}\end{align*}
    6. \begin{align*}16,800 \;\mathrm{V}\end{align*}
    1. \begin{align*}1.2 \times 10^{-6} \;\mathrm{T}, +z\end{align*}
    2. \begin{align*}1.5 \times 10^{-17} \;\mathrm{N}, -y\end{align*}
    3. \begin{align*}96 \;\mathrm{N/C}, -y\end{align*}

Ch 15: Electric Circuits—Capacitors

  1. .
    1. \begin{align*}4 \times 10^7 \;\mathrm{V}\end{align*}
    2. \begin{align*}4 \times 10^9 \;\mathrm{J}\end{align*}
  2. .
    1. \begin{align*}100 \;\mathrm{V}\end{align*}
    2. A greater voltage created a stronger electronic field, or because as charges build up they repel each other from the plate.
  3. \begin{align*}21 \;\mathrm{V}, \;\mathrm{V}\end{align*} is squared so it doesn’t act like problem \begin{align*}4\end{align*}
    1. \begin{align*}3.3 \;\mathrm{F}\end{align*}
    2. \begin{align*}54 \ \Omega\end{align*}
    1. \begin{align*}200 \;\mathrm{V}\end{align*}
    2. \begin{align*}5 \times 10^{-9} \;\mathrm{F}\end{align*}
    3. \begin{align*}2.5 \times 10^{-9} \;\mathrm{F}\end{align*}
    1. \begin{align*}6\mathrm{V}\end{align*}
    2. \begin{align*}0.3\mathrm{A}\end{align*}
    3. \begin{align*}18\mathrm{V}\end{align*}
    4. \begin{align*}3.6 \times 10^{-4}\mathrm{C}\end{align*}
    5. \begin{align*}3.2 \times 10^{-3}\mathrm{J}\end{align*}
      1. \begin{align*}80 \mu \mathrm{F}\end{align*}
      2. \begin{align*}40\mu \mathrm{F}\end{align*}
      3. \begin{align*}120 \mu \mathrm{F}\end{align*}
    1. \begin{align*}26.7\mu \mathrm{F}\end{align*}
    2. \begin{align*}166.7\mu \mathrm{F}\end{align*}
    1. \begin{align*}19.0 \times 10^3 \;\mathrm{N/C}\end{align*}
    2. \begin{align*}1.4 \times 10^{-15} \;\mathrm{N}\end{align*}
    3. \begin{align*}1.6 \times 10^{15} \;\mathrm{m/s}^2\end{align*}
    4. \begin{align*}3.3 \times 10^{-11} \;\mathrm{s}\end{align*}
    5. \begin{align*}8.9 \times 10^{-7} \;\mathrm{m}\end{align*}
    6. \begin{align*}5.1 \times 10^{-30}\end{align*}

Ch 16: Electric Circuits—Advanced

    1. \begin{align*}4.9 \times 10^{-5} \;\mathrm{H}\end{align*}
    2. \begin{align*}-9.8 \times 10^{-5} \;\mathrm{V}\end{align*}
  1. Zero
    1. Yes
    2. No
    3. Because they turn current flow on and off.
    1. \begin{align*}0.5 \;\mathrm{V}\end{align*}
    2. \begin{align*}0.05 \;\mathrm{A}\end{align*}
    3. \begin{align*}0.05 \;\mathrm{A}\end{align*}
    4. \begin{align*}5.5 \;\mathrm{V}\end{align*}
    5. \begin{align*}8.25\mathrm{V}\end{align*}
    6. \begin{align*}11 \times\end{align*}
    1. \begin{align*}On\end{align*}
    2. \begin{align*}On\end{align*}
    3. \begin{align*}On, on, off, on, off, off, on, on\end{align*}
  2. 6b. \begin{align*}10.9\mu \;\mathrm{F}\end{align*} c. \begin{align*}195 \ \Omega\end{align*} d. \begin{align*}169 \ \Omega\end{align*} e. \begin{align*}1.39 \;\mathrm{A}\end{align*} f. \begin{align*}-42^\circ\end{align*} g. \begin{align*}115\mathrm{Hz}\end{align*}

Ch 17: Light

  1. .
  2. .
  3. \begin{align*}2200\end{align*} blue wavelengths
  4. \begin{align*}65000 \ x-\end{align*}rays
  5. \begin{align*}6 \times 10^{14} \;\mathrm{Hz}\end{align*} \begin{align*}6. 3.3 \;\mathrm{m}\end{align*}
  6. .
  7. .
  8. b. vacuum & air c. \begin{align*}1.96 \times 10^8 \;\mathrm{m/s}\end{align*}
  9. \begin{align*}6.99 \times 10^{-7}\;\mathrm{m}; 5.26 \times 10^-7\;\mathrm{m}\end{align*}
  10. .
  11. .
  12. Absorbs red and green.
  13. \begin{align*}25^\circ\end{align*}
  14. .
  15. \begin{align*}33.3^\circ\end{align*}
    1. \begin{align*}49.7^\circ\end{align*}
    2. No such angle
    3. \begin{align*}48.8^\circ\end{align*}
  16. b. \begin{align*}11.4\;\mathrm{m}\end{align*} c. \begin{align*}11.5\;\mathrm{m}\end{align*}
  17. \begin{align*}85 \;\mathrm{cm}\end{align*}
  18. c. \begin{align*}+4\end{align*} units e. \begin{align*}-1\end{align*}
    1. \begin{align*}6\end{align*} units
    2. bigger; \begin{align*}M = 3\end{align*}
  19. c. \begin{align*}1.5\end{align*} units d. \begin{align*}2/3\end{align*}
  20. c. \begin{align*}3\end{align*} units e. \begin{align*}- 2/3\end{align*}
  21. c. \begin{align*}5.3\end{align*} units
  22. .
  23. b. \begin{align*}22.5 \;\mathrm{mm}\end{align*}
  24. .
  25. \begin{align*}32\;\mathrm{cm}\end{align*}
    1. \begin{align*}10.2^\circ\end{align*}
    2. \begin{align*}27\;\mathrm{cm}\end{align*}
    3. \begin{align*}20\;\mathrm{cm}\end{align*}
    1. \begin{align*}0.72\;\mathrm{m}\end{align*}
  26. .
  27. \begin{align*}54\;\mathrm{cm}, 44\;\mathrm{cm}, 21\;\mathrm{cm}, 8.8\;\mathrm{cm}\end{align*}
  28. .
  29. \begin{align*}13.5^\circ\end{align*}
  30. \begin{align*}549 \;\mathrm{nm}\end{align*}

Ch 18: Fluids

  1. \begin{align*}0.84\end{align*}
  2. \begin{align*}1.4 \times 10^5 \;\mathrm{kg}\end{align*}
    1. \begin{align*}90\end{align*}% of the berg is underwater
    2. \begin{align*}57\end{align*}%
  3. b. \begin{align*}5.06 \times 10^{-4} \;\mathrm{N}\end{align*} c. \begin{align*}7.05 \;\mathrm{m/s}^2\end{align*}
  4. \begin{align*}4.14 \;\mathrm{m/s}\end{align*}
  5. \begin{align*}40\end{align*} coins
  6. b. upward c. \begin{align*}4.5 \;\mathrm{m/s}^2\end{align*} d. Cooler air outside, so more initial buoyant force e. Thin air at high altitudes weighs almost nothing, so little weight displaced.
  7. a. At a depth of \begin{align*}10 \;\mathrm{cm}\end{align*}, the buoyant force is \begin{align*}2.9 \;\mathrm{N}\end{align*} d. The bottom of the cup is \begin{align*}3 \;\mathrm{cm}\end{align*} in radius
    1. \begin{align*}83,000 \;\mathrm{Pa}\end{align*}
    2. \begin{align*}104 \;\mathrm{N}\end{align*}
    3. \begin{align*}110 \;\mathrm{N}\end{align*}
    1. \begin{align*}248 \;\mathrm{kPa}\end{align*}
    2. \begin{align*}591 \;\mathrm{kPa}\end{align*}
    3. \begin{align*}1081 \;\mathrm{kPa}\end{align*}
  8. .
  9. \begin{align*}.0081\end{align*}
    1. \begin{align*}12500 \;\mathrm{J/m}^3\end{align*}
    2. \begin{align*}184 \;\mathrm{kPa}\end{align*}
    3. \begin{align*}1.16 \;\mathrm{kW}\end{align*}
    4. \begin{align*}2.56 \;\mathrm{kW}\end{align*}
    5. \begin{align*}11.8 \;\mathrm{A}\end{align*}
    6. $\begin{align*}12.60\end{align*}
    1. \begin{align*}611 \;\mathrm{kPa}\end{align*}
    2. \begin{align*}6 \;\mathrm{atm}\end{align*}
  10. b. \begin{align*}500,000 \;\mathrm{N}\end{align*}
    1. \begin{align*}27 \;\mathrm{m/s}^2, (2.7 \;\mathrm{g})\end{align*} upward
    2. \begin{align*}1600 \;\mathrm{N}\end{align*}
    3. \begin{align*}2200 \;\mathrm{N}\end{align*}
    1. \begin{align*}10 \;\mathrm{N}\end{align*}
    2. \begin{align*}10.5 \;\mathrm{N}\end{align*}
    3. \begin{align*}11 \;\mathrm{N}\end{align*}
    4. \begin{align*}11 \;\mathrm{N}\end{align*}
  11. a. “The Thunder Road” b. \begin{align*}2.0 \;\mathrm{m}\end{align*} (note: here and below, you may choose differently) c. \begin{align*}33.5 \;\mathrm{m}^3\end{align*} e. \begin{align*}3.5 \;\mathrm{million} \;\mathrm{N}\end{align*} f. \begin{align*}111 \;\mathrm{MPa}\end{align*}

Ch 19: Thermodynamics and Heat Engines

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. \begin{align*}517 \;\mathrm{m/s}\end{align*}
  19. \begin{align*}1.15 \times 10^{12}\;\mathrm{K}\end{align*}
  20. .
  21. \begin{align*}40 \;\mathrm{N}\end{align*}
  22. \begin{align*}\approx \ 10^{28}\end{align*} molecules
    1. \begin{align*}21,000 \;\mathrm{Pa}\end{align*}
    2. Decreases to \begin{align*}61,000 \;\mathrm{Pa}\end{align*}
    3. \begin{align*}5.8 \;\mathrm{km}\end{align*}
    1. No
    2. allowed by highly improbable state. More likely states are more disordered.
  23. a. \begin{align*} 8.34 \times 10^{23}\end{align*} b. \begin{align*}6.64 \times 10^{-27}\;\mathrm{kg}\end{align*} c. \begin{align*}1600 \;\mathrm{m/s}\end{align*} d. \begin{align*}744 \;\mathrm{kPa}\end{align*} e. \begin{align*}4.2 \times 10^{20}\end{align*} or \begin{align*}0.0007 \;\mathrm{moles}\end{align*} g. \begin{align*}0.00785 \;\mathrm{m}^3\end{align*}
    1. \begin{align*}1.9 \;\mathrm{MW}\end{align*}
    2. \begin{align*}0.56 \;\mathrm{MW}\end{align*}
    3. \begin{align*}1.3 \;\mathrm{Mw}\end{align*}
    1. \begin{align*}54\end{align*}%
    2. \begin{align*}240 \;\mathrm{kW}\end{align*}
    3. \begin{align*}890 \;\mathrm{kW}\end{align*}
    4. \begin{align*}590 \;\mathrm{kW}\end{align*}
    5. \begin{align*}630 \;\mathrm{kg}\end{align*}
    1. \begin{align*}98\end{align*}%
    2. \begin{align*}4.0\end{align*}%
    3. \begin{align*}12\end{align*}%
  24. \begin{align*}14800 \;\mathrm{J}\end{align*}
  25. \begin{align*}12,000 \;\mathrm{J}\end{align*}
  26. b. \begin{align*}720 \;\mathrm{K}, 300 \;\mathrm{K}, 600 \;\mathrm{K}\end{align*} c. isochoric; isobaric d. \begin{align*}\;\mathrm{C}\end{align*} to \begin{align*}\;\mathrm{A}; \;\mathrm{B-C}\end{align*} e. \begin{align*}0.018 \;\mathrm{J}\end{align*}
  27. b. \begin{align*}300 \;\mathrm{K}, 1200 \;\mathrm{K}\end{align*}
    1. \begin{align*}1753 \;\mathrm{J}\end{align*}
    2. \begin{align*}-120 \;\mathrm{J}\end{align*}
    3. \begin{align*}80 \;\mathrm{J}\end{align*}
    4. \begin{align*}35 \;\mathrm{J}\end{align*}
    5. \begin{align*}-100 \;\mathrm{J}, 80 \;\mathrm{J}, 80 \;\mathrm{J}\end{align*}

Ch 20: Special and General Relativity

  1. longer
  2. \begin{align*}\gamma = \infty\end{align*}, the universe would be a dot
  3. \begin{align*}76.4 \;\mathrm{m}, 76.4\;\mathrm{m}\end{align*}
  4. .
  5. \begin{align*}\gamma = 1.002\end{align*}
  6. \begin{align*}9.15 \times 10^7\;\mathrm{m/s}\end{align*}
  7. \begin{align*}2.6 \times 10^8\;\mathrm{m/s}\end{align*}
    1. \begin{align*}0.659 \;\mathrm{km}\end{align*}
    2. \begin{align*}22.4\end{align*}
    3. \begin{align*}4.92\times10^{-5}\;\mathrm{m/s}\end{align*}
    4. \begin{align*}14.7 \;\mathrm{km}\end{align*}
  8. \begin{align*}2900\;\mathrm{m}\end{align*}
  9. \begin{align*}1.34 \times 10^{-57}\;\mathrm{m}\end{align*}
  10. \begin{align*} 0.303 \;\mathrm{s}\end{align*}
  11. \begin{align*}2.9 \times 10^{-30}\mathrm{kg}\end{align*}, yes harder to accelerate
    1. f
    2. c
  12. \begin{align*}4.5 \times 10^{16} \;\mathrm{J}; 1.8 \times 10^{13}\end{align*} softballs
    1. \begin{align*}1.568 \times 10^{-13} \;\mathrm{J}\end{align*}
    2. \begin{align*}3.04 \times 10^6 \;\mathrm{J}\end{align*}

Ch 21: Radioactivity and Nuclear Physics

  1. .
  2. .
  3. .
  4. .
  5. .
    1. Substance \begin{align*}A\end{align*} decays faster than \begin{align*}B\end{align*}
    2. Substance \begin{align*}B\end{align*} because there is more material left to decay.
    1. \begin{align*}^{219}{_{88}}\mathrm{Ra} \rightarrow ^{215}{_{86}}\mathrm{Rn} + ^{4}{_{2}}\mathrm{He}\end{align*}
    2. \begin{align*}^{158}{_{63}}\mathrm{Eu} \rightarrow ^{158}{_{64}}\mathrm{Gd} + ^{0}{_{-1}}e^-\end{align*}
    3. \begin{align*}^{53}{_{22}}\mathrm{Ti} \rightarrow ^{53}{_{23}}\mathrm{Va} + ^{0}{_{-1}}e^-\end{align*}
    4. \begin{align*}^{211}{_{83}}\mathrm{Bi} \rightarrow ^{207}{_{81}}\mathrm{Tl} + ^{4}{_{2}}\mathrm{He}\end{align*}
    1. \begin{align*}5 \times 10^{24}\end{align*} atoms
    2. Decay of a lot of atoms in a short period of time
    3. \begin{align*}2.5 \times 10^{24}\end{align*} atoms
    4. \begin{align*}\frac{1}{2}\end{align*}
    5. \begin{align*}26.6\end{align*} minutes
  6. The one with the short half life, because half life is the rate of decay.
    1. Substance \begin{align*}B = 4.6 \;\mathrm{g}\end{align*} and substance \begin{align*}A = 0.035 \;\mathrm{g}\end{align*}
    2. substance \begin{align*}B\end{align*}
  7. \begin{align*}1.2 \;\mathrm{g}\end{align*}
  8. \begin{align*}125 \;\mathrm{g}\end{align*}
  9. \begin{align*}0.46\end{align*} minutes
  10. \begin{align*}t = 144,700\end{align*} years
  11. \begin{align*}0.0155 \;\mathrm{g}\end{align*}
  12. \begin{align*}17\end{align*} years
  13. \begin{align*}49,000\end{align*} years

Ch 22: Standard Model of Particle Physics

  1. strange
  2. some type of meson
  3. Electron, photon, tau\begin{align*}\ldots\end{align*}
  4. Neutron, electron neutrino, \begin{align*}Z^0\end{align*}
  5. Neutron, because it doesn’t have electrical charge
  6. No, because it doesn’t have electrical charge
  7. Two anti-up quarks and an anti-down quark
  8. Lepton number, and energy/mass conservation
  9. Yes, \begin{align*}W^+, W^-\end{align*}, because they both have charge
  10. The weak force because it can interact with both quarks and leptons
  11. Yes; a,b,c,e; no; d,f
  12. The standard model makes verifiable predictions, string theory makes few verifiable predictions.

Ch 23: Feynman Diagrams

  1. Allowed: an electron and anti-electron(positron) annihilate to a photon then become an electron and anti-electron(positron) again.
  2. Not allowed: electrons don’t go backward though time, and charge is not conserved
  3. Not allowed: lepton number is not conserved
    1. Allowed: two electrons exchange a photon
    2. Not allowed: neutrinos do not have charge and therefore cannot exchange a photon.
    1. Allowed: an electron and an up quark exchange a photon
    2. Not allowed: lepton number not conserved
  4. Not allowed: quark number not conserved
  5. Allowed: electron neutrino annihilates with a positron becomes a \begin{align*}W^+\end{align*} then splits to muon and muon neutrino.
  6. Allowed: up quark annihilates with anti-up quark becomes \begin{align*}Z^0\end{align*}, then becomes a strange quark and anti-strange quark
  7. Not allowed: charge not conserved
  8. Allowed: this is a very rare interaction
  9. Not allowed: electrons don’t interact with gluons
  10. Not allowed: neutrinos don’t interact with photons
  11. Allowed: the electron and the positron are exchanging virtual electron/positron pairs
  12. Allowed: this is beta decay, a down quark splits into an up quark an electron and an electron neutrino via a \begin{align*}W^-\end{align*} particle.
  13. Allowed: a muon splits into an muon neutrino, an electron and an electron neutrino via a \begin{align*}W^-\end{align*} particle.

Ch 24: Quantum Mechanics

    1. \begin{align*}6.752 \times 10^{-26} J, 2.253 \times 10^{-34} \;\mathrm{kgm/s}\end{align*}
    2. \begin{align*}5.96 \times 10^{-20} J, 1.99 \times 10^{-28} \;\mathrm{kgm/s}\end{align*}
    3. \begin{align*}4.90 \times 10^{-28} J, 1.63 \times 10^{-36} \;\mathrm{kgm/s}\end{align*}
    1. \begin{align*}1.94 \;\mathrm{eV}, 1.04 \times 10^{-27} \;\mathrm{kgm/s}\end{align*}
    2. \begin{align*}12.7 \;\mathrm{eV}, 6.76 \times 10^{-27} \;\mathrm{kgm/s}\end{align*}
    3. \begin{align*}5.00 \;\mathrm{eV}, 2.67 \times 10^{-21} \;\mathrm{kgm/s}\end{align*}
    1. \begin{align*}.0827 \;\mathrm{nm}\end{align*}
    2. \begin{align*}4.59 \times 10^{-4}\;\mathrm{nm}\end{align*}
    3. \begin{align*}.942 \;\mathrm{nm}\end{align*}
  1. \begin{align*}1.03 \times 10^{-20}\;\mathrm{m}\end{align*}
    1. \begin{align*}36 \;\mathrm{nm}\end{align*}
    2. no
    3. \begin{align*}380 \;\mathrm{nm}, 73 \;\mathrm{nm}, 36 \;\mathrm{nm}, 92 \;\mathrm{nm}, 39 \;\mathrm{nm}\end{align*}
  2. \begin{align*}.80 \;\mathrm{V}\end{align*}
  3. \begin{align*}.564 \;\mathrm{nm}\end{align*}
    1. \begin{align*}.124 \;\mathrm{nm}\end{align*}
    2. \begin{align*}.00120 \;\mathrm{nm}\end{align*}
  4. \begin{align*}24,600 \;\mathrm{m/s}\end{align*}
  5. \begin{align*}1.84 \times 10^8\;\mathrm{m/s}\end{align*}
    1. \begin{align*} .491 \;\mathrm{m/s}\end{align*}
    2. \begin{align*}3.14 10^7\;\mathrm{J}\end{align*}
    3. \begin{align*}64 \;\mathrm{Mw}\end{align*}
    4. \begin{align*}1.55 \;\mathrm{pm}\end{align*}
  6. \begin{align*}3.27 \;\mathrm{eV}\end{align*}
  7. .
  8. b. \begin{align*}15\end{align*} c. \begin{align*}182 \;\mathrm{nm}, 188 \;\mathrm{nm}, 206 \;\mathrm{nm}, 230 \;\mathrm{nm}\end{align*}
  9. \begin{align*}-10.3 \;\mathrm{eV}, -3.82 \;\mathrm{eV}, -2.29 \;\mathrm{eV}, -1.83 \;\mathrm{eV}\end{align*}
    1. \begin{align*}4.19 \times 10^7\;\mathrm{m/s}\end{align*}
    2. \begin{align*}1.70 \times 10^{-11}\;\mathrm{m}\end{align*}
    3. \begin{align*}1.95^\circ\end{align*}
    4. \begin{align*}.068 \;\mathrm{m}\end{align*}
    1. \begin{align*}1.89 \;\mathrm{V}\end{align*}
    2. \begin{align*}1.60 \;\mathrm{A}\end{align*}
    3. \begin{align*}1.25 \ \Omega\end{align*}
    1. \begin{align*}4.40 \times 10^{-24}\;\mathrm{kgm/s}\end{align*}
    2. \begin{align*}1.17 \times 10^{-24}\;\mathrm{kgm/s}\end{align*}
    3. \begin{align*}3.23 \times 10^{-24}\;\mathrm{kgm/s}\end{align*}
    4. \begin{align*}3.76 \times 10^7\;\mathrm{m/s}\end{align*}
    1. \begin{align*}1.1365 \times 10^{-22}\;\mathrm{kgm/s}\end{align*}
    2. \begin{align*}5.860 \;\mathrm{pm}\end{align*}
    3. \begin{align*}^242\;\mathrm{Cu} \rightarrow ^4\mathrm{He} + ^238\mathrm{Pu}\end{align*}
    4. \begin{align*}238.0497 \;\mathrm{amu}\end{align*}
    5. \begin{align*}17.7 \;\mathrm{cm}\end{align*}
    6. \begin{align*}-y\end{align*}
    7. \begin{align*}+y, 34.2 \;\mathrm{N/C}\end{align*}

Ch 25: Global Warming

Image Attributions

Show Hide Details
Description
Date Created:
Feb 23, 2012
Last Modified:
Jul 01, 2015
Files can only be attached to the latest version of section
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.SCI.ENG.SE.1.Physics-People's-Physics-(Video).26.1