<meta http-equiv="refresh" content="1; url=/nojavascript/"> Appendix A: Answers to Selected Problems (3e) | CK-12 Foundation
Dismiss
Skip Navigation
You are reading an older version of this FlexBook® textbook: People's Physics Book Version 3 (with Videos) Go to the latest version.

26.1: Appendix A: Answers to Selected Problems (3e)

Created by: CK-12

Ch 1: Units and Problem Solving

    1. A person of height 5 \;\mathrm{ft}. 11 \;\mathrm{in}. is 1.80 \;\mathrm{m} tall
    2. The same person is 180 \;\mathrm{cm}
    1. 3 \;\mathrm{seconds} = 1/1200 \;\mathrm{hours}
    2. 3x10^3 \;\mathrm{ms}
  1. 87.5 \;\mathrm{mi/hr}
  2. c. if the person weighs 150 \;\mathrm{lb}. this is equivalent to 668 \;\mathrm{N}
  3. Pascals (Pa), which equals \;\mathrm{N/m}^2
  4. 168 \;\mathrm{lb}., 76.2 \;\mathrm{kg}
  5. 5 \;\mathrm{mi/hr/s}
  6. 15.13 \;\mathrm{m}
  7. 11.85 \;\mathrm{m}
  8. 89,300 \;\mathrm{mm}
  9. f. 2025 \;\mathrm{mm}^2
  10. b. 196 \;\mathrm{cm}^2
  11. c.  250 \;\mathrm{cm}^3
  12. 8:1, each side goes up by 2 \;\mathrm{cm}, so it will change by 2^3
  13. 3.5 \times 10^{51}:1
  14.  72,000 \;\mathrm{km/h}
  15.  0.75 \;\mathrm{kg/s}
  16.  8 \times 2^N \;\mathrm{cm}^3/\;\mathrm{sec}; N is for each second starting with 0 seconds for 8 \;\mathrm{cm}^3
  17. About 12 million
  18. About 1 \frac{1}{2} trillion (1.5 \times 10^{12})
  19. [\mathrm{a}] = \;\mathrm{N/kg} = \;\mathrm{m/s}^2

Ch 2: Energy Conservation

  1. d
  2. (discuss in class)
    1. 5.0 \times 10^5 \;\mathrm{J}
    2. 3.7 \times 10^5 \;\mathrm{J}
    3. Chemical bonds in the food.
    4. 99 \;\mathrm{m/s}
    1. 5.0 \times 10^5 \;\mathrm{J}
    2. 108 \;\mathrm{m/s}
    1. 450,000 \;\mathrm{J}
    2. 22,500 \;\mathrm{J}
    3. 5,625 \;\mathrm{J}
    4. 21.2 \;\mathrm{m/s}
    5. 9.18 \;\mathrm{m}
  3. .
  4. b. KE = 504,600 \;\mathrm{J}; U_g = 1,058,400 \;\mathrm{J}; E_{total} = 1,563,000 \;\mathrm{J}
    1. 34 \;\mathrm{m/s \ at \ B}; 28 \;\mathrm{m/s \ at \ D}, 40 \;\mathrm{m/s \ at \ E}, 49 \;\mathrm{m/s \ at \ C \ and \ F}; 0 \;\mathrm{m/s \ at \ H}
    2. 96 \;\mathrm{m}
    1. 1.7 \;\mathrm{J}
    2. 1.3 \;\mathrm{m/s}
    3. 0.4 \;\mathrm{J}, 0.63 \;\mathrm{m/s}
    1. 1.2 \;\mathrm{m/s}^2
    2. 130 \;\mathrm{J}
    1. 6750 \;\mathrm{J}
    2. 2.25 \times 10^5 \;\mathrm{J}
    3. 1.5 \times 10^5 \;\mathrm{J/gallon \ of \ gas}
  5. 0.76 \;\mathrm{m}

Ch 3: One-Dimensional Motion

  1. .
  2. .
  3. .
  4. .
    1. Zyan
    2. Ashaan is accelerating because the distance he travels every 0.1 seconds is increasing, so the speed must be increasing
    3. Ashaan
    4. Zyan
    5. Ashaan
  5. .
  6. .
  7. 6 minutes
  8. d. 20 \;\mathrm{meters} e. 40 \;\mathrm{meters} f. 2.67 \;\mathrm{m/s} g. 6 \;\mathrm{m/s} h. Between t = 15 \;\mathrm{s} and t = 20 sec because your position goes from x = 30 \;\mathrm{m} to x = 20\mathrm{m}. i. You made some sort of turn
    1. 7.7 \;\mathrm{m/s}^2
    2. 47 \;\mathrm{m}, 150 \;\mathrm{feet}
    3. 34 \;\mathrm{m/s}
    1. 1.22 \;\mathrm{m}
    2. 4.9 \;\mathrm{m/s}
    3. 2.46 \;\mathrm{m/s}
    4. -4.9 \;\mathrm{m/s}
  9. b. 1 second c. at 2 seconds d. 4\mathrm{m}
    1. 250 \;\mathrm{m}
    2. 13 \;\mathrm{m/s}, -13 \;\mathrm{m/s}
    3. 14 \;\mathrm{s} for round trip
  10. Let’s say we can jump 20 \;\mathrm{feet} \ (6.1 \;\mathrm{m}) in the air. ☺ Then, on the moon, we can jump 36.5 \;\mathrm{m} straight up.
  11. -31\mathrm{m/s}^2
    1. 23 \;\mathrm{m/s}
    2. 3.6 seconds
    3. 28 \;\mathrm{m}
    4. 45\mathrm{m}
    1. 25 \;\mathrm{m/s}
    2. 30 \;\mathrm{m}
    3. 2.5 \;\mathrm{m/s}^2
  12. 2 \;\mathrm{m/s}^2
    1. v_0 = 0
    2. 10 \;\mathrm{m/s}^2
    3. - 10 \;\mathrm{m/s}^2
    4. 60 \;\mathrm{m}
    1. 0.3 \;\mathrm{m/s}^2
    2. 0.5 \;\mathrm{m/s}

Ch 4: Two-Dimensional and Projectile Motion

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
    1. 13 \;\mathrm{m}
    2. 41 degrees
    3. v_y = 26 \;\mathrm{m/s}; v_x = 45 \;\mathrm{m/s}
    4. 56 degrees, 14 \;\mathrm{m/s}
  7. .
  8. 32 \;\mathrm{m}
    1. 0.5 \;\mathrm{s}
    2. 0.8 \;\mathrm{m/s}
  9. 104 \;\mathrm{m}
  10. t = 0.60 \;\mathrm{s}, 1.8 \;\mathrm{m} below target
  11. 28 \;\mathrm{m}.
    1. 3.5 \;\mathrm{s}.
    2. 35 \;\mathrm{m}; 15 \;\mathrm{m}
  12. 40 \;\mathrm{m}; 8.5 \;\mathrm{m}
  13. 1.3 seconds, 7.1 meters
  14. 50 \;\mathrm{m}; v_{0y} = 30 \;\mathrm{m/s}; 50^0; on the way up
  15. 4.4 \;\mathrm{s}
  16. 19^\circ
  17. 0.5 \;\mathrm{s}
  18. 2.3 \;\mathrm{m/s}
  19. 6 \;\mathrm{m}
  20. 1.4 seconds
    1. yes
    2. 14 \;\mathrm{m/s} @ 23 degrees from horizontal
  21. 22 \;\mathrm{m/s} @ 62 degrees

Ch 5: Newton’s Laws

  1. .
  2. .
  3. .
  4. Zero; weight of the hammer minus the air resistance.
  5. 2 forces
  6. 1 force
  7. No
  8. The towel’s inertia resists the acceleration
    1. Same distance
    2. You go farther
    3. Same amount of force
  9. .
  10. a. 98 \;\mathrm{N} b. 98\;\mathrm{N}
  11. .
  12. 32\;\mathrm{N}
  13. 5.7 \;\mathrm{m/s}^2
  14. .
  15. .
  16. F_x = 14 \;\mathrm{N}, F_y = 20\;\mathrm{N}
  17. Left picture: F = 23\mathrm{N} \ 98^\circ, right picture:F = 54 \;\mathrm{N} \ 5^\circ
  18. 3 \;\mathrm{m/s}^2 \;\mathrm{east}
  19. 4 \;\mathrm{m/s}^2; 22.5^\circ \;\mathrm{NE}
  20. 0.51
  21. 0.2
  22. The rope will not break because his weight of 784\;\mathrm{N} is distributed between the two ropes.
  23. Yes, because his weight of 784\;\mathrm{N} is greater than what the rope can hold.
  24. Mass is 51 \;\mathrm{kg} and weight is 82\;\mathrm{N}
    1. While accelerating down
    2. 686\;\mathrm{N}
    3. 826\;\mathrm{N}
    1. 390\;\mathrm{N}
    2. 490\;\mathrm{N}
  25. 0.33
  26. 3.6 \;\mathrm{kg}
  27. \mathrm{g} \sin \theta
  28. b. 20\;\mathrm{N} c. 4.9\;\mathrm{N} d. 1.63 \;\mathrm{kg} e. Eraser would slip down the wall
    1. 1450\;\mathrm{N}
    2. 5600\;\mathrm{N}
    3. 5700\;\mathrm{N}
    4. Friction between the tires and the ground
    5. Fuel, engine, or equal and opposite reaction
  29. b. 210\;\mathrm{N} c. no, the box is flat so the normal force doesn’t change d. 2.8 \;\mathrm{m/s}^2 e. 28 \;\mathrm{m/s} f. no g. 69\;\mathrm{N} h. 57\;\mathrm{N} i. 40\;\mathrm{N} j. 0.33 k. 0.09
  30. .
    1. zero
    2. -kx0
  31. b. f_1= \mu_km_1\mathrm{g} \cos\theta; f_2 = \mu_km_2\mathrm{g} \cos\theta c. Ma d. T_A= (m_1 + m_2) (a + \mu \cos\theta) and T_B = m_2a + \mu m_2 \cos\theta e. Solve by using d = 1/2at^2 and substituting h for d
    1. Yes, because it is static and you know the angle and m_1
    2. Yes, T_A and the angle gives you m_1 and the angle and T_C gives you m_2, m_1 = T_A \cos 25/\mathrm{g} and m_2 = T_C \cos 30/\mathrm{g}
  32. a. 3 seconds d. 90 \;\mathrm{m}
  33. .
  34. .
  35. .
    1. 1.5 \;\mathrm{N}; 2.1 \;\mathrm{N}; 0.71

Ch 6: Centripetal Forces

  1. .
  2. .
  3. .
  4. .
    1. 100 \;\mathrm{N}
    2. 10 \;\mathrm{m/s}^2
    1. 25 \;\mathrm{N} towards her
    2. 25 \;\mathrm{N} towards you
    1. 14.2 \;\mathrm{m/s}^2
    2. 7.1 \times 10^3 \;\mathrm{N}
    3. friction between the tires and the road
  5. .0034\mathrm{g}
    1. 6.2 \times 10^5\;\mathrm{m/s}^2
    2. The same as a.
  6. 3.56  \times  10^{22}\mathrm{N}
  7. 4.2  \times  10^{-7} \;\mathrm{N}; very small force
  8. g = 9.8 \;\mathrm{m/s}^2; you’ll get close to this number but not exactly due to some other small effects
    1. 4  \times  10^{26} \;\mathrm{N}
    2. gravity
    3. 2  \times  10^{41} \;\mathrm{kg}
  9. .006 \;\mathrm{m/s}^2
    1. .765
    2. 4880 \;\mathrm{N}
    1. \sim 10^{-8} \;\mathrm{N} very small force
    2. Your pencil does not accelerate toward you because the frictional force on your pencil is much greater than this force.
  10. a. 4.23  \times  10^7\mathrm{m} b. 6.6 \ R_e d. The same, the radius is independent of mass
  11. 1.9  \times  10^7\mathrm{m}
  12. You get two answers for r, one is outside of the two stars one is between them, that’s the one you want, 1.32  \times  10^{10}\mathrm{m} from the larger star.
  13. .
  14. .
    1. v = 28\;\mathrm{m/s}
    2. v-down, a-right
    3. f-right
    4. Yes, 640\mathrm{N}

Ch 7: Momentum Conservation

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. 37.5 \;\mathrm{m/s}
  9. v_1 = 2v_2
    1. 24 \frac{kg-m}{5}
    2. 0.364 \;\mathrm{m/s}
    3. 22 \frac{kg-m}{5}
    4. 109 \;\mathrm{N}
    5. 109 \;\mathrm{N} due to Newton’s third law
  10. 2.0 \;\mathrm{kg}, 125 \;\mathrm{m/s}
  11. 21 \;\mathrm{m/s} to the left
  12. 3250 \;\mathrm{N}
    1. 90 \;\mathrm{sec}
    2. 1.7 \times 10^5 \;\mathrm{sec}
    1. 60 \;\mathrm{m/s}
    2. .700 \;\mathrm{sec}
    3. yes, 8.16 \;\mathrm{m}
  13. 0.13 \;\mathrm{m/s} to the left
    1. 11000 \;\mathrm{N} to the left
    2. tree experienced same average force of 11000 \;\mathrm{N} but to the right
    3. 2500 \;\mathrm{lb}.
    4. about 2.5 “g”s of acceleration
    1. no change
    2. the last two cars
    1. 0.00912 \;\mathrm{s}
    1. 0.0058 \;\mathrm{m/s}^2
    2. 3.5 \;\mathrm{m/s}^2
    1.  15 \;\mathrm{m/s}
    2. 49^\circ \;\mathrm{S} of \;\mathrm{E}
  14. b. 4.6 \;\mathrm{m/s} \ 68^\circ

Ch 8: Energy & Force

  1. .
  2. .
  3. .
  4. .
  5. .
    1. 7.18 \times 10^9 \;\mathrm{J}
    2. 204 \;\mathrm{m/s}
    1. 34 \;\mathrm{m/s} @ B; 28 \;\mathrm{m/s} @ D; 40 \;\mathrm{m/s} @ E; 49 \;\mathrm{m/s} @ C and F; 0 \;\mathrm{m/s} @ H
    2. 30 \;\mathrm{m}
    3. Yes, it makes the loop
  6. a. 2.3 \;\mathrm{m/s} c. No, the baby will not clear the hill.
    1. 29,500 \;\mathrm{J}
    2. 13 \;\mathrm{m}
  7. .
    1. 86\;\mathrm{m}
    2. 220\;\mathrm{m}
    1. 48.5 \;\mathrm{m/s}
    2. 128 \;\mathrm{N}
  8. 0.32 \;\mathrm{m/s} each
    1. 10 \;\mathrm{m/s}
    2. 52\;\mathrm{m}
    1. 1.1 \times 10^4 \;\mathrm{N/m}
    2. 2\;\mathrm{m} above the spring
  9. 96%
  10. .
    1. .008\;\mathrm{m}
    2. 5.12^\circ
  11. 8 \;\mathrm{m/s} same direction as the cue ball and 0 \;\mathrm{m/s}
  12. \mathrm{v}_{golf} =-24.5 \;\mathrm{m/s}; \mathrm{vpool} = 17.6 \;\mathrm{m/s}
  13. 2.8\;\mathrm{m}
    1. 0.57 \;\mathrm{m/s}
    2. Leonora’s
    3. 617 \;\mathrm{J}
    1. 19.8 \;\mathrm{m/s}
    2. 8.8 \;\mathrm{m/s}
    3. 39.5\;\mathrm{m}
    1. 89 \;\mathrm{kW}
    2. 0.4
    3. 15.1 \;\mathrm{m/s}
  14. 43.8 \;\mathrm{m/s}
  15. .
  16. .
  17. .
    1. 3.15  \times  10^5 \;\mathrm{J}
    2. 18.0 \;\mathrm{m/s}
    3. 2.41\;\mathrm{m}
    4. 7900 \;\mathrm{J}
    1. v_0 /14
    2. mv_{0}{^{2}}/8
    3. 7mv_{0}{^{2}}/392
    4. 71%

Ch 9: Rotational Motion

  1. .
    1. 9.74 \times 10^{37} \;\mathrm{kg \ m}2
    2. 1.33 \times 10^{47} \;\mathrm{kg \ m}^2
    3.  0.5 \;\mathrm{kg \ m}^2
    4. 0.28 \;\mathrm{kg \ m}^2
    5. 0.07 \;\mathrm{kg \ m}^2
  2. a. True, all rotate 2\pi for 86,400 ;\mathrm{sec} which is 24 hours, b. True, \omega = 2\pi/\mathrm{t} and t=86,400 \;\mathrm{s} f. True, L is the same g. L = I\omega and I = 2/5 \;\mathrm{mr}^2 h. True, K = \frac{1}{2} I\omega^2 & I = 2/5 \;\mathrm{mr}^2 \;\mathrm{sub-in} \ K = 1/5 \;\mathrm{mr}^2\omega^2 i. True, K = \frac{1}{2} I\omega^2 & I = \;\mathrm{mr}^2 \;\mathrm{sub-in} \ K = \frac{1}{2} mr^2\omega^2
    1. 250 \;\mathrm{rad}
    2. 40 \;\mathrm{rad}
    3. 25 \;\mathrm{rad/s}
    4. Force applied perpendicular to radius allows \alpha
    5. 0.27 \;\mathrm{kg \ m}^2,
    6. K^5 = 84 \;\mathrm{J} and K^10 = 340 \;\mathrm{J}
  3. .
  4. Moment of inertia at the end 1/3 \;\mathrm{ML}^2 at the center 1/12 \;\mathrm{ML}^2, angular momentum, L = I\omega and torque, \tau = I\alpha change the in the same way
  5. .
  6. Lower
  7. Iron ball
    1. 200 \;\mathrm{N} team
    2. 40 \;\mathrm{N}
    3. 0.02 \;\mathrm{rad/s}^2
    4. 25 \;\mathrm{s}
    1. Coin with the hole
    2. Coin with the hole
    1. weight
    2. 19.6 \;\mathrm{N}
    3. plank’s length (0.8\mathrm{m}) left of the pivot
    4. 15.7 \;\mathrm{N \ m},
    5. Ba. weight, Bb. 14.7 \;\mathrm{N}, Bc. plank’s length (0.3\mathrm{m}) left of the pivot, Bd. 4.4 \;\mathrm{N \ m}, Ca. weight, Cb. 13.6\;\mathrm{N}, Cc. plank’s length (1.00 \;\mathrm{m}) right of the pivot, Cd. 13.6 \;\mathrm{N \ m}, f) 6.5 \;\mathrm{N \ m \ CC}, g) no, net torque doesn’t equal zero
    1. 7.27  \times  10^{-6} \;\mathrm{Hz}
    2. 7.27 \;\mathrm{Hz}
    1. 100 \;\mathrm{Hz}
    2. 1.25  \times  10^5 \;\mathrm{J}
    3. 2500 \;\mathrm{J-s}
    4. 12,500 \;\mathrm{m-N}
  8. 28 \;\mathrm{rev/sec}
  9. 2300\;\mathrm{N}
  10. b. 771\;\mathrm{N}, 1030\;\mathrm{N} c. 554 \;\mathrm{kgm}^2 d. 4.81\mathrm{rad/sec}^2
    1. 300\;\mathrm{N}
    2. 240N, -22\;\mathrm{N}
    3. .092
    1. 2280\;\mathrm{N}
    2. 856 \;\mathrm{n} toward beam, 106\;\mathrm{N} down
    3. 425 \;\mathrm{kgm}^2
    4. 3.39 \;\mathrm{rad/sec}^2
    1. -1.28 \;\mathrm{Nm}
    2. \;\mathrm{CCW}
  11. a. 1411 \;\mathrm{kg} c. 17410\;\mathrm{N} d. angular acc goes down as arm moves to vertical

Ch 10: Simple Harmonic Motion

    1. Buoyant force and gravity
    2. T = 6 \;\mathrm{s}, f = 1/6 \;\mathrm{Hz}
    1. 9.8 \times 10^5 \;\mathrm{N/m}
    2. 0.5 \;\mathrm{mm}
    3. 22 \;\mathrm{Hz}, no.
  1. 3.2 \times 10^3 \;\mathrm{N/m}
  2. a. 110 \;\mathrm{N/m} d. v(t)=(25) \cos(83\mathrm{t})
  3. .
  4. .
    1. 0.0038 \;\mathrm{s}
    2. 0.0038 \;\mathrm{s}
  5. .
  6. .
  7. 4 times
  8. 0.04 \;\mathrm{m}
    1. 16 \;\mathrm{Hz}
    2. 16 complete cycles but 32 times up and down, 315 complete cycles but 630 times up and down
    3. 0.063 \;\mathrm{s}
    1. 24.8 \;\mathrm{J},165 \;\mathrm{N}, 413 \;\mathrm{m/s}^2
    2. 11.1\mathrm{m/s}, 0, 0
    3. 6.2 \;\mathrm{J}, 18.6 \;\mathrm{J}, 9.49 \;\mathrm{m/s}, 82.5 \;\mathrm{N}, 206 \;\mathrm{m/s}^2
    4. .169 \;\mathrm{sec}, 5.9 \;\mathrm{Hz}
  9. b. .245 \;\mathrm{J} c. 1.40\mathrm{m/s} d. 1.00 \;\mathrm{m/s} f. 2.82 \;\mathrm{N} g. 3.10 \;\mathrm{N}

Ch 11: Wave Motion and Sound

  1. 390 \;\mathrm{Hz}
    1. 4 \;\mathrm{Hz}
    2. It was being driven near its resonant frequency.
    3. 8 \;\mathrm{Hz}, 12 \;\mathrm{Hz}
    4. (Note that earthquakes rarely shake at more than 6 \;\mathrm{Hz}).
  2. .
  3. .
    1. 7 nodes including the 2 at the ends
    2. 3.6 \;\mathrm{Hz}
  4. 1.7 \;\mathrm{km}
    1. 1.7 \;\mathrm{cm}
    2. 17 \;\mathrm{m}
    1. 4.3 \times 10^{14} \;\mathrm{Hz}
    2. 2.3 \times 10^{-15} \;\mathrm{s} - man that electron is moving fast
    1. 2.828 \;\mathrm{m}
    2. 3.352 \;\mathrm{m}
    3. L = 1/4 \ \lambda so it would be difficult to receive the longer wavelengths.
  5. Very low frequency
  6. b. Same as closed at both ends
  7. .
  8. 1.9 \;\mathrm{Hz} or 2.1 \;\mathrm{Hz}.
  9. 0.53 \;\mathrm{m}
  10. 2.2 \;\mathrm{m}, 36 \;\mathrm{Hz}; 1.1 \;\mathrm{m}, 73 \;\mathrm{Hz}; 0.733 \;\mathrm{m}, 110 \;\mathrm{Hz}; 0.55 \;\mathrm{m}, 146 \;\mathrm{Hz}
  11. 430\;\mathrm{Hz}; 1.3 \times 10^3 \;\mathrm{Hz}; 2.1 \times 10^3 \;\mathrm{Hz}; 3.0 \times 10^3 \;\mathrm{Hz};
    1. The tube closed at one end will have a longer fundamental wavelength and a lower frequency.
    2. If the temperature increases the wavelength will not change, but the frequency will increase accordingly.
  12. struck by bullet first.
  13. 80 \;\mathrm{Hz}; 0.6 \;\mathrm{m}
    1. 0.457 \;\mathrm{m}
    2. 0.914 \;\mathrm{m}
    3. 1.37 \;\mathrm{m}
  14. 2230 \;\mathrm{Hz}; 2780 \;\mathrm{Hz}; 2970 \;\mathrm{Hz}
  15. 498 \;\mathrm{Hz}
  16. 150 \;\mathrm{m/s}

Ch 12: Electricity

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. b. 1350 \;\mathrm{N} c. 1350 \;\mathrm{N}
    1. 1.1 \times 10^9 \;\mathrm{N/C}
    2. 9000 \;\mathrm{N}
  12. F_g = 1.0  \times  10^{-47} \;\mathrm{N} and F_e = 2.3 \times 10^{-8} \;\mathrm{N}. The electric force is 39 orders of magnitudes bigger.
  13. 1.0  \times  10^{-4} C
  14. .
  15. a. down b. Up 16c, 5.5  \times  10^{11} \;\mathrm{m/s}^2 e. 2.9  \times  10^8 \;\mathrm{m/s}^2
    1. Toward the object
    2. 3.6  \times  10^4 \;\mathrm{N/C} to the left with a force of 2.8  \times  10^{-7} \;\mathrm{N}
  16. Twice as close to the smaller charge, so 2 \;\mathrm{m} from 12\mu \mathrm{C} charge and 1 \;\mathrm{m} from 3\mu \mathrm{C} charge.
  17. 0.293 \;\mathrm{N} and at 42.5^\circ
  18. 624 \;\mathrm{N/C} and at an angle of -22.4^\circ from the +x-axis.
    1. 7500\mathrm{V}
    2. 1.5 \;\mathrm{m/s}
    1. 6.4  \times  10^{-17}\;\mathrm{N}
    2. 1300\mathrm{V}
    3. 2.1  \times  10 ^{-16} \;\mathrm{J}
    4. 2.2  \times  10^7 \;\mathrm{m/s}
  19. b. 0.25\mathrm{m} c. F_T = 0.022\;\mathrm{N} d. 0.37 \mu \mathrm{C}

Ch 13: Electric Circuits – Batteries and Resistors

    1. 4.5\mathrm{C}
    2. 2.8 \times 10^{19} electrons
    1. 0.11 \;\mathrm{A}
    2. 1.0 \;\mathrm{W}
    3. 2.5  \times  10^{21} electrons
    4. 3636 \;\mathrm{W}
    1. 192 \ \Omega
    2. 0.42 \;\mathrm{W}
    1. 5.4 \;\mathrm{mV}
    2. 1.4  \times  10^{-8} \;\mathrm{A}
    3. 7.3  \times  10^{-11} \;\mathrm{W}, not a lot
    4. 2.6  \times  10^{-7} \;\mathrm{J}
  1. left = brighter, right = longer
    1. 224 \;\mathrm{V}
    2. 448 \;\mathrm{W}
    3. 400 \;\mathrm{W} by 100 \ \Omega and 48 \;\mathrm{W} by 12 \ \Omega
  2. b. 8.3 \;\mathrm{W}
  3. 0.5\mathrm{A}
  4. .
  5. 0.8\mathrm{A} and the 50 \ \Omega on the left
    1. 0.94 \;\mathrm{A}
    2. 112 \;\mathrm{W}
    3. 0.35 \;\mathrm{A}
    4. 0.94 \;\mathrm{A}
    5. 50, 45, 75 \ \Omega
    6. both 50 \ \Omega resistors are brightest, then 45 \ \Omega, then 75 \ \Omega
    1. 0.76 \;\mathrm{A}
    2. 7.0 \;\mathrm{W}
  6. b. 1000 \;\mathrm{W}
  7. .
    1. 9.1 \ \Omega
    2. 29.1 \ \Omega
    3. 10.8 \ \Omega
    4.  26.8 \ \Omega
    5. 1.8\mathrm{A}
    6. 21.5\mathrm{V}
    7. 19.4\mathrm{V}
    8. 6.1\mathrm{V}
    9. 0.24\mathrm{A}
    10. 16 \;\mathrm{kW}
    1. 3.66 \ \Omega
    2. 0.36\mathrm{A}
    3. 1.32 \;\mathrm{V}
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
    1. 10\mathrm{V}

Ch 14: Magnetism

  1. No: if v = 0 then F = 0; yes: F = qE
  2. .
  3. .
    1. Into the page
    2. Down the page
    3. Right
  4. Both pointing away from north
  5. .
  6. .
  7. 7.6 \;\mathrm{T}, south
  8. Down the page; 60 \;\mathrm{N}
    1. To the right, 1.88 \times 10^4 \;\mathrm{N}
    2. 91.7 \;\mathrm{m/s}
    3. It should be doubled
  9. East 1.5 \times 10^4 \;\mathrm{A}
  10. 0.00016 \;\mathrm{T}; if CCW motion, B is pointed into the ground.
  11. 1.2 \times 105 \;\mathrm{V}, counterclockwise
    1. 15 \;\mathrm{V}
    2. Counter-clockwise
    1. 2 \times 10^{-5} \;\mathrm{T}
    2. Into the page
    3. 2.8 \;\mathrm{N/m}
    4. CW
    1. 2.42 \times 10^8 \;\mathrm{m/s}
    2. 9.69  \times  10^{-12} \;\mathrm{N}
    3. .0055 \;\mathrm{m}
  12. E/B
    1. 8 \times 10^{-7} \;\mathrm{T}
    2. 1.3 \times 10^{-6} \;\mathrm{C}
    1. 0 .8 \;\mathrm{V}
    2. CCW
    3. .064 \;\mathrm{N}
    4. .16 \;\mathrm{N/C}
    5. .13 \;\mathrm{w}
  13. a. 1.11 \times 10^8 \;\mathrm{m/s} b. 9.1 \times 10^{-30} \;\mathrm{N} < < 6.4 \times 10^{-14} \;\mathrm{N} d. .00364 \;\mathrm{T} e. .173 \;\mathrm{m} f. 7.03 \times 1016 \;\mathrm{m/s}^2 g. 3.27^\circ
  14. 19.2 \;\mathrm{V}
    1. 8.39 \times 10^7 \;\mathrm{m/s}
    2. 2.68 \times 10^{-13} \;\mathrm{N}, -y
    3. 2.95 \times 10^17 \;\mathrm{m/s}^2
    4. .00838 \;\mathrm{m}
    5. 1.68 \times 10^6 \;\mathrm{N/C}
    6. 16,800 \;\mathrm{V}
    1. 1.2 \times 10^{-6} \;\mathrm{T}, +z
    2. 1.5 \times 10^{-17} \;\mathrm{N}, -y
    3. 96 \;\mathrm{N/C}, -y

Ch 15: Electric Circuits—Capacitors

  1. .
    1. 4 \times 10^7 \;\mathrm{V}
    2. 4 \times 10^9 \;\mathrm{J}
  2. .
    1. 100 \;\mathrm{V}
    2. A greater voltage created a stronger electronic field, or because as charges build up they repel each other from the plate.
  3. 21 \;\mathrm{V}, \;\mathrm{V} is squared so it doesn’t act like problem 4
    1. 3.3 \;\mathrm{F}
    2. 54 \ \Omega
    1. 200 \;\mathrm{V}
    2. 5  \times 10^{-9} \;\mathrm{F}
    3. 2.5 \times 10^{-9} \;\mathrm{F}
    1. 6\mathrm{V}
    2. 0.3\mathrm{A}
    3. 18\mathrm{V}
    4. 3.6 \times 10^{-4}\mathrm{C}
    5. 3.2 \times 10^{-3}\mathrm{J}
      1. 80 \mu \mathrm{F}
      2. 40\mu \mathrm{F}
      3. 120 \mu \mathrm{F}
    1. 26.7\mu \mathrm{F}
    2. 166.7\mu \mathrm{F}
    1. 19.0 \times 10^3 \;\mathrm{N/C}
    2. 1.4 \times 10^{-15} \;\mathrm{N}
    3. 1.6 \times 10^{15} \;\mathrm{m/s}^2
    4. 3.3 \times 10^{-11} \;\mathrm{s}
    5. 8.9 \times 10^{-7} \;\mathrm{m}
    6. 5.1 \times 10^{-30}

Ch 16: Electric Circuits—Advanced

    1. 4.9 \times 10^{-5} \;\mathrm{H}
    2. -9.8 \times 10^{-5} \;\mathrm{V}
  1. Zero
    1. Yes
    2. No
    3. Because they turn current flow on and off.
    1. 0.5 \;\mathrm{V}
    2. 0.05 \;\mathrm{A}
    3. 0.05 \;\mathrm{A}
    4. 5.5 \;\mathrm{V}
    5. 8.25\mathrm{V}
    6. 11 \times
    1. On
    2. On
    3. On, on, off, on, off, off, on, on
  2. 6b. 10.9\mu \;\mathrm{F} c. 195 \ \Omega d. 169 \ \Omega e. 1.39 \;\mathrm{A} f. -42^\circ g. 115\mathrm{Hz}

Ch 17: Light

  1. .
  2. .
  3. 2200 blue wavelengths
  4. 65000 \ x-rays
  5. 6 \times 10^{14} \;\mathrm{Hz} 6. 3.3 \;\mathrm{m}
  6. .
  7. .
  8. b. vacuum & air c. 1.96 \times 10^8 \;\mathrm{m/s}
  9. 6.99 \times 10^{-7}\;\mathrm{m}; 5.26 \times 10^-7\;\mathrm{m}
  10. .
  11. .
  12. Absorbs red and green.
  13. 25^\circ
  14. .
  15. 33.3^\circ
    1. 49.7^\circ
    2. No such angle
    3. 48.8^\circ
  16. b. 11.4\;\mathrm{m} c. 11.5\;\mathrm{m}
  17. 85 \;\mathrm{cm}
  18. c. +4 units e. -1
    1. 6 units
    2. bigger; M = 3
  19. c. 1.5 units d. 2/3
  20. c. 3 units e. - 2/3
  21. c. 5.3 units
  22. .
  23. b. 22.5 \;\mathrm{mm}
  24. .
  25. 32\;\mathrm{cm}
    1. 10.2^\circ
    2. 27\;\mathrm{cm}
    3. 20\;\mathrm{cm}
    1. 0.72\;\mathrm{m}
  26. .
  27. 54\;\mathrm{cm}, 44\;\mathrm{cm}, 21\;\mathrm{cm}, 8.8\;\mathrm{cm}
  28. .
  29. 13.5^\circ
  30. 549 \;\mathrm{nm}

Ch 18: Fluids

  1. 0.84
  2. 1.4 \times 10^5 \;\mathrm{kg}
    1. 90% of the berg is underwater
    2. 57%
  3. b. 5.06 \times 10^{-4} \;\mathrm{N} c. 7.05 \;\mathrm{m/s}^2
  4. 4.14 \;\mathrm{m/s}
  5. 40 coins
  6. b. upward c. 4.5 \;\mathrm{m/s}^2 d. Cooler air outside, so more initial buoyant force e. Thin air at high altitudes weighs almost nothing, so little weight displaced.
  7. a. At a depth of 10 \;\mathrm{cm}, the buoyant force is 2.9 \;\mathrm{N} d. The bottom of the cup is 3 \;\mathrm{cm} in radius
    1. 83,000 \;\mathrm{Pa}
    2. 104 \;\mathrm{N}
    3. 110 \;\mathrm{N}
    1. 248 \;\mathrm{kPa}
    2. 591 \;\mathrm{kPa}
    3. 1081 \;\mathrm{kPa}
  8. .
  9. .0081
    1. 12500 \;\mathrm{J/m}^3
    2. 184 \;\mathrm{kPa}
    3. 1.16 \;\mathrm{kW}
    4. 2.56 \;\mathrm{kW}
    5. 11.8 \;\mathrm{A}
    6. $12.60
    1. 611 \;\mathrm{kPa}
    2. 6 \;\mathrm{atm}
  10. b. 500,000 \;\mathrm{N}
    1. 27 \;\mathrm{m/s}^2, (2.7 \;\mathrm{g}) upward
    2. 1600 \;\mathrm{N}
    3. 2200 \;\mathrm{N}
    1. 10 \;\mathrm{N}
    2. 10.5 \;\mathrm{N}
    3. 11 \;\mathrm{N}
    4. 11 \;\mathrm{N}
  11. a. “The Thunder Road” b. 2.0 \;\mathrm{m} (note: here and below, you may choose differently) c. 33.5 \;\mathrm{m}^3 e. 3.5 \;\mathrm{million} \;\mathrm{N} f. 111 \;\mathrm{MPa}

Ch 19: Thermodynamics and Heat Engines

  1. .
  2. .
  3. .
  4. .
  5. .
  6. .
  7. .
  8. .
  9. .
  10. .
  11. .
  12. .
  13. .
  14. .
  15. .
  16. .
  17. .
  18. 517 \;\mathrm{m/s}
  19. 1.15 \times 10^{12}\;\mathrm{K}
  20. .
  21. 40 \;\mathrm{N}
  22. \approx \ 10^{28} molecules
    1. 21,000 \;\mathrm{Pa}
    2. Decreases to 61,000 \;\mathrm{Pa}
    3. 5.8 \;\mathrm{km}
    1. No
    2. allowed by highly improbable state. More likely states are more disordered.
  23. a.  8.34 \times 10^{23} b. 6.64 \times 10^{-27}\;\mathrm{kg} c. 1600 \;\mathrm{m/s} d. 744 \;\mathrm{kPa} e. 4.2 \times 10^{20} or 0.0007 \;\mathrm{moles} g. 0.00785 \;\mathrm{m}^3
    1. 1.9 \;\mathrm{MW}
    2. 0.56 \;\mathrm{MW}
    3. 1.3 \;\mathrm{Mw}
    1. 54%
    2. 240 \;\mathrm{kW}
    3. 890 \;\mathrm{kW}
    4. 590 \;\mathrm{kW}
    5. 630 \;\mathrm{kg}
    1. 98%
    2. 4.0%
    3. 12%
  24. 14800 \;\mathrm{J}
  25. 12,000 \;\mathrm{J}
  26. b. 720 \;\mathrm{K}, 300 \;\mathrm{K}, 600 \;\mathrm{K} c. isochoric; isobaric d. \;\mathrm{C} to \;\mathrm{A}; \;\mathrm{B-C} e. 0.018 \;\mathrm{J}
  27. b. 300 \;\mathrm{K}, 1200 \;\mathrm{K}
    1. 1753 \;\mathrm{J}
    2. -120 \;\mathrm{J}
    3. 80 \;\mathrm{J}
    4. 35 \;\mathrm{J}
    5. -100 \;\mathrm{J}, 80 \;\mathrm{J}, 80 \;\mathrm{J}

Ch 20: Special and General Relativity

  1. longer
  2. \gamma  = \infty, the universe would be a dot
  3. 76.4 \;\mathrm{m}, 76.4\;\mathrm{m}
  4. .
  5. \gamma = 1.002
  6. 9.15 \times 10^7\;\mathrm{m/s}
  7. 2.6 \times 10^8\;\mathrm{m/s}
    1. 0.659 \;\mathrm{km}
    2. 22.4
    3. 4.92\times10^{-5}\;\mathrm{m/s}
    4. 14.7 \;\mathrm{km}
  8. 2900\;\mathrm{m}
  9. 1.34 \times 10^{-57}\;\mathrm{m}
  10.  0.303 \;\mathrm{s}
  11. 2.9 \times 10^{-30}\mathrm{kg}, yes harder to accelerate
    1. f
    2. c
  12. 4.5 \times 10^{16} \;\mathrm{J}; 1.8 \times 10^{13} softballs
    1. 1.568 \times 10^{-13} \;\mathrm{J}
    2. 3.04 \times 10^6 \;\mathrm{J}

Ch 21: Radioactivity and Nuclear Physics

  1. .
  2. .
  3. .
  4. .
  5. .
    1. Substance A decays faster than B
    2. Substance B because there is more material left to decay.
    1. ^{219}{_{88}}\mathrm{Ra} \rightarrow ^{215}{_{86}}\mathrm{Rn} + ^{4}{_{2}}\mathrm{He}
    2. ^{158}{_{63}}\mathrm{Eu} \rightarrow ^{158}{_{64}}\mathrm{Gd} + ^{0}{_{-1}}e^-
    3. ^{53}{_{22}}\mathrm{Ti} \rightarrow ^{53}{_{23}}\mathrm{Va} + ^{0}{_{-1}}e^-
    4. ^{211}{_{83}}\mathrm{Bi} \rightarrow ^{207}{_{81}}\mathrm{Tl} + ^{4}{_{2}}\mathrm{He}
    1. 5 \times 10^{24} atoms
    2. Decay of a lot of atoms in a short period of time
    3. 2.5 \times 10^{24} atoms
    4. \frac{1}{2}
    5. 26.6 minutes
  6. The one with the short half life, because half life is the rate of decay.
    1. Substance B = 4.6 \;\mathrm{g} and substance A = 0.035 \;\mathrm{g}
    2. substance B
  7. 1.2 \;\mathrm{g}
  8. 125 \;\mathrm{g}
  9. 0.46 minutes
  10. t = 144,700 years
  11. 0.0155 \;\mathrm{g}
  12. 17 years
  13. 49,000 years

Ch 22: Standard Model of Particle Physics

  1. strange
  2. some type of meson
  3. Electron, photon, tau\ldots
  4. Neutron, electron neutrino, Z^0
  5. Neutron, because it doesn’t have electrical charge
  6. No, because it doesn’t have electrical charge
  7. Two anti-up quarks and an anti-down quark
  8. Lepton number, and energy/mass conservation
  9. Yes, W^+, W^-, because they both have charge
  10. The weak force because it can interact with both quarks and leptons
  11. Yes; a,b,c,e; no; d,f
  12. The standard model makes verifiable predictions, string theory makes few verifiable predictions.

Ch 23: Feynman Diagrams

  1. Allowed: an electron and anti-electron(positron) annihilate to a photon then become an electron and anti-electron(positron) again.
  2. Not allowed: electrons don’t go backward though time, and charge is not conserved
  3. Not allowed: lepton number is not conserved
    1. Allowed: two electrons exchange a photon
    2. Not allowed: neutrinos do not have charge and therefore cannot exchange a photon.
    1. Allowed: an electron and an up quark exchange a photon
    2. Not allowed: lepton number not conserved
  4. Not allowed: quark number not conserved
  5. Allowed: electron neutrino annihilates with a positron becomes a W^+ then splits to muon and muon neutrino.
  6. Allowed: up quark annihilates with anti-up quark becomes Z^0, then becomes a strange quark and anti-strange quark
  7. Not allowed: charge not conserved
  8. Allowed: this is a very rare interaction
  9. Not allowed: electrons don’t interact with gluons
  10. Not allowed: neutrinos don’t interact with photons
  11. Allowed: the electron and the positron are exchanging virtual electron/positron pairs
  12. Allowed: this is beta decay, a down quark splits into an up quark an electron and an electron neutrino via a W^- particle.
  13. Allowed: a muon splits into an muon neutrino, an electron and an electron neutrino via a W^- particle.

Ch 24: Quantum Mechanics

    1. 6.752 \times 10^{-26} J, 2.253 \times 10^{-34} \;\mathrm{kgm/s}
    2. 5.96 \times 10^{-20} J, 1.99 \times 10^{-28} \;\mathrm{kgm/s}
    3. 4.90 \times 10^{-28} J, 1.63 \times 10^{-36} \;\mathrm{kgm/s}
    1. 1.94 \;\mathrm{eV}, 1.04 \times 10^{-27} \;\mathrm{kgm/s}
    2. 12.7 \;\mathrm{eV}, 6.76 \times 10^{-27} \;\mathrm{kgm/s}
    3. 5.00 \;\mathrm{eV}, 2.67 \times 10^{-21} \;\mathrm{kgm/s}
    1. .0827 \;\mathrm{nm}
    2. 4.59 \times 10^{-4}\;\mathrm{nm}
    3. .942 \;\mathrm{nm}
  1. 1.03 \times 10^{-20}\;\mathrm{m}
    1. 36 \;\mathrm{nm}
    2. no
    3. 380 \;\mathrm{nm}, 73 \;\mathrm{nm}, 36 \;\mathrm{nm}, 92 \;\mathrm{nm}, 39 \;\mathrm{nm}
  2. .80 \;\mathrm{V}
  3. .564 \;\mathrm{nm}
    1. .124 \;\mathrm{nm}
    2. .00120 \;\mathrm{nm}
  4. 24,600 \;\mathrm{m/s}
  5. 1.84 \times 10^8\;\mathrm{m/s}
    1.  .491 \;\mathrm{m/s}
    2. 3.14 10^7\;\mathrm{J}
    3. 64 \;\mathrm{Mw}
    4. 1.55 \;\mathrm{pm}
  6. 3.27 \;\mathrm{eV}
  7. .
  8. b. 15 c. 182 \;\mathrm{nm}, 188 \;\mathrm{nm}, 206 \;\mathrm{nm}, 230 \;\mathrm{nm}
  9. -10.3 \;\mathrm{eV}, -3.82 \;\mathrm{eV}, -2.29 \;\mathrm{eV}, -1.83 \;\mathrm{eV}
    1. 4.19 \times 10^7\;\mathrm{m/s}
    2. 1.70 \times 10^{-11}\;\mathrm{m}
    3. 1.95^\circ
    4. .068 \;\mathrm{m}
    1. 1.89 \;\mathrm{V}
    2. 1.60 \;\mathrm{A}
    3. 1.25 \ \Omega
    1. 4.40 \times 10^{-24}\;\mathrm{kgm/s}
    2. 1.17 \times 10^{-24}\;\mathrm{kgm/s}
    3. 3.23 \times 10^{-24}\;\mathrm{kgm/s}
    4. 3.76 \times 10^7\;\mathrm{m/s}
    1. 1.1365 \times 10^{-22}\;\mathrm{kgm/s}
    2. 5.860 \;\mathrm{pm}
    3. ^242\;\mathrm{Cu} \rightarrow ^4\mathrm{He} + ^238\mathrm{Pu}
    4. 238.0497 \;\mathrm{amu}
    5. 17.7 \;\mathrm{cm}
    6. -y
    7. +y, 34.2 \;\mathrm{N/C}

Ch 25: Global Warming

Image Attributions

Description

Categories:

Grades:

Date Created:

Feb 23, 2012

Last Modified:

Aug 01, 2014
Files can only be attached to the latest version of None

Reviews

Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
CK.SCI.ENG.SE.1.Physics-People's-Physics-(Video).26.1

Original text