<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

Chapter 27: Equations and Fundamental Concepts

Difficulty Level: At Grade Created by: CK-12

Simple Harmonic Motion and Wave Motion

\begin{align*}T & = 1 / f \\ T_{sp} & = 2 \pi \sqrt{\frac{m} {k}}\end{align*}

\begin{align*}v & = \lambda f \\ T_P & = 2 \pi \sqrt{\frac{L} {g}}\end{align*}

\begin{align*}f_n & = \frac{nv} {2L} && \text{nodes at both ends} \\ f_n & = \frac{nv} {4L}&& \text{(n is odd)} \text{node at one end} \\ f_{beat} & = |f_1 - f_2|\end{align*}

\begin{align*}v_{sound} = 343 \;\mathrm{m/s}\end{align*} (in air at \begin{align*}20 \;\mathrm{C}\end{align*})

A note: \begin{align*}440 \;\mathrm{Hz}\end{align*}

C note: \begin{align*}524 \;\mathrm{Hz}\end{align*}

D note: \begin{align*}588 \;\mathrm{Hz}\end{align*}

E note: \begin{align*}660 \;\mathrm{Hz}\end{align*}

G note: \begin{align*}784 \;\mathrm{Hz}\end{align*}

Fluids and Thermodynamics

\begin{align*}3/2 \ kT & = <\frac{1} {2}\ \text{mv}^2>_{avg} \\ P & = F / A \\ P & = P_0 + \rho gh \\ \triangle P + \triangle (\rho gh) + \triangle \left (\frac{1} {2} \rho v^2 \right ) & = 0 \\ \phi & = A \cdot v \\ ^\circ C & = ^\circ K + 273.15\end{align*}

\begin{align*}PV & = NkT = nRT \\ F_{buoy} & = - (\rho_{water}V_{displaced})g \\ Q_{in} &= W + \triangle U + Q_{out} \\ W & = P\triangle\ \text{V} \\ k & = \frac{1} {2} \rho v^2; u = \rho gh \\ \eta & = W/Q_{in}; \eta_{Carnot} = 1 - (T_{low} / T_{high})\end{align*}

\begin{align*}k & = 1.381 \times 10^{-23}\ \text{J/K} \\ \rho_{air} & = 1.29\ \text{kg/m}^3\\ R & = 8.315\ \text{J/mol-K} \\ \rho_{water} & = 1000\ \text{kg/m}^3 \\ P_{ATMOSPH} & = 101,000\ \text{N/M}^2 \\ N_{avo} & = 6.022 \times 10^{23}\ \text{mol}^{-1}\end{align*}

Properties of Fundamental Particles

\begin{align*}m_{proton} & = 1.6726 \times 10^{-27}\ \text{kg} \\ q_{electron} & = - q_{proton} = -1.602 \times 10^{-19}\ \text{C} \\ r_{hydrogen \ atom} & \approx 0.529 \times 10^{-10}\ \text{m}\end{align*}

\begin{align*}m_{electron} & = 9.109 \times 10^{-31}\ \text{kg} \\ 1\ \text{amu} & = 1.6605 \times 10^{-27}\ \text{kg} = 931.5\ \text{Mev/c}^2 \\ \triangle\ \text{E} & = \triangle\ \text{mc}^2\end{align*}

\begin{align*}m_{neutron} = 1.6749 \times 10^{-27}\ \text{kg}\end{align*}

Radioactivity, Nuclear Physics, and Quantum Mechanics

\begin{align*}(\triangle x)(\triangle p) & \approx h/4\pi \\ \lambda & = h/p \\ N & = \mathrm{N0} \ \left (\frac{1} {2} \right ) \ t/t_H \\ 1\ \text{ev} & \rightarrow 1240\ \text{nm} \\ \text{(energy of a photon)}\end{align*}

\begin{align*}(\triangle E)(\triangle t) & \approx h/4\pi \\ E_{photon} & = hf = pc \\ Kmax & = qV = hf + \phi\end{align*}

\begin{align*}h & = 6.626 \times 10^{-34}\ \text{J.s} \\ ^AZ & = \text{element \ Z}\ \text{with A nucleons} \\ ^{14}C: t_H & = 5,730\ \text{years} (\text{half life} = t_h)\\ ^{239}Pu: t_H & = 24,119\ \text{years} \\ E_o & = - 13.605\ \text{ev} \text{(Hydrogen ground state)}\end{align*}

Light

\begin{align*}\lambda_{blue} & \approx 450\ \text{nm} \\ \lambda_{green} & \approx 500\ \text{nm} \\ \lambda_{red} & \approx 600\ \text{nm} \end{align*}

\begin{align*}n_i \sin(\theta_i) & = n_r \sin(\theta_r) \\ c & = 2.998 \times 10^8\ \text{m/s} \\ m\lambda & = \text{dsin}(\theta)\end{align*}

\begin{align*}n_{air} & \approx n_{vacuum} = 1.00 \\ n_{water} & = 1.33 \\ n & = c/v_{material}\end{align*}

primary: Red, Green, Blue

secondary: Magenta, Cyan, Yellow

\begin{align*} \frac{1} {f} = \frac{1} {d_o} + \frac{1} {di} && M = h_i/h_o = d_i/d_o\end{align*}

Electricity and Magnetism

\begin{align*}F_E & = k \ q_1q_2 / r^2 \\ E & = F_E / q \\ E & = - \triangle V / \triangle x\end{align*}

\begin{align*}F_B & = qv \times B =\ \text{qvB} \sin(\theta) \\ B_{wire} & = \mu_o I / 2\pi r \\ F_{wire} & = \ell(I \times B) = \ell\ \text{IB} \sin(\theta)\end{align*}

(direction: RHR)

(direction: RHR)

(direction: RHR)

\begin{align*}k & = 8.992 \times 10^9\ \text{N} \cdot\ \text{m}^2/C^2 \\ \mu_o & = 4\pi \times 10^{-7}\ \text{T} \cdot\ \text{m/A} \\ \phi & = \text{BA} \cos(\theta)\end{align*}

\begin{align*}U_{el} = q\triangle V\end{align*}

Point charges: \begin{align*}E(r) = k q / r^2\end{align*} and \begin{align*}V(r) = k q / r\end{align*}

\begin{align*}(k = 1/4\pi \varepsilon_o\end{align*} where \begin{align*}\varepsilon_o = 8.854 \times 10^{-12} \ C^2/\;\mathrm{N} \cdot\ \text{m}^2)\end{align*}

\begin{align*}V = -\triangle \phi / \triangle t =\ \text{Blv}\end{align*}

Electric Circuits

\begin{align*}\triangle V & = IR \\ I & = \triangle q/ \triangle t = \triangle V/R \\ \tau & = RC\end{align*}

\begin{align*}P & = \triangle E / \triangle t = I\triangle V = I^2R = V^2/R \\ R & = \rho l /A \\ V & = -L(\triangle I/\triangle t)\end{align*}

\begin{align*}Q & = C \triangle V \\ C_{parallel \ plate} & = k \varepsilon A/d \\ C_{parallel} & = C_1 + C_2 + \ldots\end{align*}

\begin{align*}R_{series} & = R_1 + R_2 + \ldots \\ 1 / R_{parallel} & = (1/R_1) + (1/R_2) + \ldots \\ 1 / C_{series} & = (1/C_1) + (1/C_2) + \ldots\end{align*}

Name Symbols Unit Typical examples
Voltage Source \begin{align*}\triangle V\end{align*} volt \begin{align*}(V)\end{align*} \begin{align*}9 \;\mathrm{V}\end{align*} (cell phone charger); \begin{align*}12 \;\mathrm{V}\end{align*} (car); \begin{align*}120 \;\mathrm{VAC}\end{align*} (U.S. wall outlet)
Resistor \begin{align*}R\end{align*} Ohm \begin{align*}(\Omega)\end{align*} \begin{align*}144 \Omega (100 \;\mathrm{w}, 120v \;\mathrm{bulb});\end{align*} \begin{align*}1 k\Omega \;\mathrm{(wet \ skin)}\end{align*}
Capacitor \begin{align*}C\end{align*} Farad \begin{align*}(F)\end{align*} RAM in a computer, \begin{align*}700 \;\mathrm{MF}\end{align*} (Earth)
Inductor \begin{align*}L\end{align*} Henry \begin{align*}(H)\end{align*} \begin{align*}7 \;\mathrm{H}\end{align*} (guitar pickup)
Diode by type none light-emitting diode (LED); solar panel
Transistor by type none Computer processors

Equation Sheet

Mathematics

\begin{align*}\sin(\theta) & = b/c \rightarrow b = c \cdot \sin(\theta) \\ \cos(\theta) & = a/c \rightarrow a = c \cdot \cos(\theta) \\ \tan(\theta) & = b/a \rightarrow b = a \cdot \tan(\theta) \\ c^2 & = a^2 + b^2\end{align*}

\begin{align*}180^\circ & = \pi\ \text{radians}\\ C_{circle} & = 2\pi R \\ A_{circle} & = \pi R^2 \\ V_{sphere} & = (4/3)\pi R^3 \\ V_{cylinder} & = \pi R^2h\end{align*}

If \begin{align*}X\end{align*} is any unit, then \begin{align*}\ldots\end{align*}

\begin{align*}1\ \text{mX} & = 0.001\ \text{X} = 10^{-3}\ \text{X} \\ 1 \mu \mathrm{X} & = 0.000 001\ \text{X} = 10^{-6}\ \text{X} \\ 1\ \text{nX} & = 0.000 000 001\ \text{X} = 10^{-9}\ \text{X}\end{align*}

\begin{align*}1\ \text{kX} & = 1 000\ \text{X} = 10^3\ \text{X} \\ 1\ \text{MX} & = 1 000 000\ \text{X} = 10^6\ \text{X} \\ 1\ \text{GX} & = 1 000 000 000\ \text{X} = 10^9\ \text{X}\end{align*}

If \begin{align*}ax^2 + bx + c = 0\end{align*}, then \begin{align*}\ldots\end{align*}

\begin{align*}x = \frac{-b \pm \sqrt{b^2 - 4ac}} {2a}\end{align*}

% difference = |(measured – accepted) / accepted | \begin{align*}\times 100\end{align*}%

vector dot product: \begin{align*}a \cdot b = ab \ \cos\theta\end{align*} (product is a scalar)---\begin{align*}\theta\end{align*} is angle between vectors

vector cross product: \begin{align*}a \times b = ab \ \sin\theta\end{align*} (direction is given by RHR)

Kinematics Under Constant Acceleration

\begin{align*}\triangle x & = x_{final} - x_{initial} \\ \triangle\ \text{(anything)} & = \text{final value} - \text{initial value} \\ v_{avg} & = \triangle x / \triangle t \\ a_{avg} & = \triangle v / \triangle t\end{align*}

\begin{align*}x(t) & = x_0 + v_0t + \frac{1} {2} a_x t^2 \\ v(t) & = v_0 + at \\ v^2 & = v_0^2 + 2a(\triangle x)\end{align*}

\begin{align*}(x = x_0\ \text{and} \ v = v_0\ \text{at} \ t = 0)\end{align*}

\begin{align*}g & = 9.81\ \text{m/s}^2 \approx 10\ \text{m/s}^ 2 \\ 1\ \text{km} & = 1000\ \text{m} \\ 1\ \text{meter} & = 3.28\ \text{ft} \\ 1\ \text{mile} & = 1.61\ \text{km}\end{align*}

Newtonian Physics and Centripetal Motion

\begin{align*}a & = F_{net} / m F_g = mg \\ F_{net} & = \Sigma F_{all \ forces} = ma\end{align*}

\begin{align*}f_k = \mu_kF_N F_{sp} & = -k(\triangle x) \\ f_ s \le \ \mu_sF_N F_G & = Gm_1m_2 / r^2 \\ F_C & = mv^2 / r\end{align*}

\begin{align*}G & = 6.672 \times 10^{-11}\ \text{N} \cdot\ \text{m}^2/kg^2 \\ 1\ \text{kg} & = 1000\ \text{g} = 2.2\ \text{lbs} \\ 1\ \text{N} & = 1\ \text{kg} \cdot\ \text{m/s}^2\end{align*}

Momentum and Energy Conservation

\begin{align*}\Sigma p_{initial} & = \Sigma p_{final} \\ E_{initial} & = E_{final} \\ E & = K + U + W\end{align*}

\begin{align*}p & = mv \\ K & = 1/2\ \text{mv}^2\end{align*}

\begin{align*}F_{avg} & = \triangle p / \triangle t \\ U_g & = mgh \\ U_{sp} & = \frac{1} {2} k(\triangle x)^2 \\ U_g & = -Gm_1m_2/ r\end{align*}

\begin{align*}W & = F \cdot \triangle x \\ P & = \triangle W / \triangle t \\ P & = F \cdot v\end{align*}

\begin{align*}1\ \text{J} & = 1\ \text{N} \cdot\ \text{m} \\ 1\ \text{W} & = 1\ \text{J/s} \\ 1\ \text{food \ Calorie} & = 4180\ \text{J} \\ 1\ \text{ev} & = 1.602 \times 10^{-19}\ \text{J} \\ 1\ \text{kwh} & = 3.600 \times 10^6\ \text{J}\end{align*}

Rotational Motion

\begin{align*}d & = r\theta \\ v & = r\omega \\ a & = r\alpha \\ \omega & = 2\pi / T\end{align*}

\begin{align*}\theta(t) & = \theta_0 + \omega_0t + \frac{1} {2} \alpha t^2 \\ \omega(t) & = \omega_0 + \alpha t \\ \omega^ 2 & = \omega_0^2 + 2\alpha(\triangle \theta) \\ a_C & = -r\omega^2\end{align*}

\begin{align*}\tau = I \alpha \\ L = r \times p = I \omega \\ \tau = r \times F = \triangle L / \triangle t\end{align*}

\begin{align*}K = 1/2 I\omega^2\end{align*}

\begin{align*}I_{\text{ring about cm}} & = \text{MR}^2 \\ I_{\text{disk about cm}} & = \frac{1} {2} \text{MR}^2 \\ I_{\text{rod about end}} & = (1/3)\text{ML}^2 \\ I_{\text{solid sphere about cm}} & = (2/5)\text{MR}^2\end{align*}

Astronomy

\begin{align*}P_\ast & = 4 \times 10^{26}\ \text{W} \\ M_\ast & = 1.99 \times 10^{30}\ \text{kg} \\ R_\ast & = 6.96 \times 10^8\ \text{m}\end{align*}

\begin{align*}1\ \text{light-year} (ly) & = 9.45 \times 10^{15}\ \text{m} \\ M_{Earth} & = 5.97 \times 10^{24}\ \text{kg} \\ R_{Earth} & = 6.38 \times 10^6\ \text{m}\end{align*}

\begin{align*}\;\mathrm{Earth-Sun \ distance} & = 1.496 \times 10^{11}\ \text{m} \\ M_{Moon} & = 7.35 \times 10^{22}\ \text{kg} \\ R_{Moon} & = 1.74 \times 10^6\ \text{m} \\ \mathrm{Earth-Moon \ distance} & = 3.84 \times 10^8\ \text{m}\end{align*}

Chapter Outline

    Chapter Summary

    Image Attributions

    Show Hide Details
    Description
    Subjects:
    Grades:
    Date Created:
    Feb 23, 2012
    Last Modified:
    Aug 10, 2015
    Files can only be attached to the latest version of chapter
    Please wait...
    Please wait...
    Image Detail
    Sizes: Medium | Original
     
    CK.SCI.ENG.SE.1.Physics-People's-Physics-(Video).27