<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

2.3: One-Sided Limits

Difficulty Level: At Grade Created by: CK-12

This activity is intended to supplement Calculus, Chapter 1, Lesson 6.

Set up – graphing piecewise functions that show discontinuity

1. After turning on your device, go to the \begin{align*}Y=\end{align*} screen by pressing \begin{align*}[\blacklozenge]\end{align*} \begin{align*}F1\end{align*}.

2. Turn the functions off or clear them; press \begin{align*}F1 >\end{align*} Clear Functions.

Note: You can turn functions off by un-checking them using \begin{align*}F4\end{align*}.

3. Turn Discontinuity Detection on. Press \begin{align*}F1 >\end{align*} Format to find the option for Discontinuity Detection.

4. Set the window, using \begin{align*}[\blacklozenge]\end{align*} \begin{align*}F2\end{align*}, to the settings shown at the right.

5. Back on the \begin{align*}Y=\end{align*} screen enter three piecewise functions.

At \begin{align*}y1\end{align*} press ENTER. Find when(in the CATALOG quickly by pressing CATALOG [ . ]. This shows the notation: when(condition, true, false)

For \begin{align*}y1\end{align*}, type when\begin{align*}(x<1,1,a)|a=5\end{align*}

The “such that” bar key ([ | ]) is to the left of the [7] key.

\begin{align*}y1(x)= \begin{cases} 1,x<1 \\ \qquad \quad \ |a=5 \\ a,x \ge 1 \end{cases}\end{align*}

For \begin{align*}y2\end{align*}, type when\begin{align*}(x<1,x+2,a^*x^{\land}2)|a=5\end{align*}

\begin{align*}y2(x)= \begin{cases} x+2, x < 1 \\ \qquad \qquad \quad |a=5 \\ a \cdot x^2, x \ge 1 \end{cases}\end{align*}

For \begin{align*}y3\end{align*}, type when \begin{align*}(x < 2,2 \sin \left((x - 1) \frac {\pi}{2} \right),a + 3 \sin \left((x-4)\frac {\pi}{2} \right)|a=5\end{align*}

\begin{align*}y3(x)= \begin{cases} 2 \sin \left ((x-1) \frac{\pi}{2} \right ) ,x<2 \\ \qquad \qquad \qquad \qquad \qquad |a=5 \\ a + 3 \sin \left ((x-4) \frac {\pi}{2} \right ),x \ge 12 \end{cases}\end{align*}

6. Graph one function at a time by using \begin{align*}F4\end{align*} to have only one function checked at a time.

On a graph screen examine both sides of where the discontinuity exists using \begin{align*}F3\end{align*} Trace.

7. For Problems 1 and 2 below, use \begin{align*}[\blacklozenge]\end{align*} \begin{align*}F4\end{align*} to have table settings of \begin{align*}\text{tblStart} = 0.98\end{align*} and \begin{align*}\triangle \text{tbl}= 0.01\end{align*}, to numerically examine the left and right-hand limits. Be sure to press ENTER to save changes before pressing \begin{align*}[\blacklozenge]\end{align*} \begin{align*}F5\end{align*} to view the table.

For Problems 1, 2, and 3 estimate the limits graphically and numerically using trace and table.

Problem 1

\begin{align*}y1(x) = \begin{cases} 1,x<1 \\ \qquad \qquad |a=5 \\ a,x\ge1 \end{cases}\end{align*}

\begin{align*}\lim_{x \to 1^-}y1(x) \approx \underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}\lim_{x \to 1^+}y1(x) \approx \underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Try other values for \begin{align*}a\end{align*} in the graph of \begin{align*}y1(x)\end{align*} to find what \begin{align*}a\end{align*} makes \begin{align*}\lim_{x \to 1}y1(x)\end{align*} exist. On the \begin{align*}Y=\end{align*} screen, press ENTER when \begin{align*}y1\end{align*} is highlighted. Press \begin{align*} \blacktriangleright \end{align*} and then backspace \begin{align*}\leftarrow\end{align*} to try different values for \begin{align*}a\end{align*}. Graph it to see if appear continuous.

\begin{align*}a=\underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Problem 2

\begin{align*}y2(x)= \begin{cases} x+2, x<1 \\ \qquad \qquad \quad|a=5 \\ a \cdot x^2,x\ge1 \end{cases}\end{align*}

\begin{align*}\lim_{x \to 1^-}y2(x) \approx \underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}\lim_{x \to 1^+}y2(x)\approx \underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Try other values for \begin{align*}a\end{align*} in the graph of \begin{align*}y2(x)\end{align*} to find what \begin{align*}a\end{align*} makes \begin{align*}\lim_{x \to 1}y2(x)\end{align*} exist.

\begin{align*}a=\underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Show calculations of the left hand limit and the right hand limit to verify that your value for \begin{align*}a\end{align*} makes the limit exist.

Problem 3

\begin{align*}y3(x)= \begin{cases} 2\sin \left((x-1)\frac{\pi}{2} \right),x<2 \\ \qquad \qquad \qquad \qquad \qquad |a=5 \\ a+3\sin \left((x-4)\frac{\pi}{2} \right),x\ge2 \end{cases}\end{align*}

\begin{align*}\lim_{x \to 2^-} y3(x)\approx \underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}\lim_{x \to 2^+}y3(x)\approx \underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Try other values for \begin{align*}a\end{align*} in the graph of \begin{align*}y3(x)\end{align*} to find what \begin{align*}a\end{align*} makes \begin{align*}\lim_{x \to 2} y3(x)\end{align*} exist.

\begin{align*}a=\underline{\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Show calculations of the left hand limit and the right hand limit to verify that your value for \begin{align*}a\end{align*} makes the limit exist.

Extension – Continuity

A function is continuous at \begin{align*}x=c\end{align*} if:

  • \begin{align*}f(c)\end{align*} exists
  • \begin{align*}\lim_{x \to c}f(x)\end{align*} exists, and
  • \begin{align*}\lim_{x \to c}f(x)=f(c)\end{align*}

Use CAS to algebraically solve for \begin{align*}a\end{align*} that makes

(a) \begin{align*}\lim_{x \to 1}y2(x)\end{align*} exist

(b) \begin{align*}\lim_{x \to 2}y3(x)\end{align*} exist

Then prove each function is continuous.

Key press help:

  • Begin by pressing HOME. Clean Up the screen by pressing \begin{align*}2^{nd}\end{align*} \begin{align*}[F1]\end{align*}. Choose NewProb and press ENTER to put this on the command line and ENTER to execute the command.
  • Type \begin{align*}y2(x)\end{align*} ENTER. The Define command is under the \begin{align*}F4\end{align*} menu. Type Define \begin{align*}f(x)=\end{align*}, then up arrow to highlight the output from the previous line. Press ENTER on the highlighted piecewise function to copy it down to the command line.

  • To solve a right sided limit, press \begin{align*}F3 > \end{align*} limit(. On the command line enter limit\begin{align*}(f(x),x,1,1)\end{align*} ENTER.
  • Now, press \begin{align*}F2\end{align*} ENTER to select solve( Then up arrow to select the input from the previous line, press ENTER. Next type [ -- ]. Up arrow to the input again and press ENTER. This time put a negative (-) in front of the last 1. Finally type [ , ] ALPHA [ -- ] and close the parentheses. This method will enable you to quickly enter solve(limit\begin{align*}(f(x),x,1,1) = \text{limit}\ (f(x) ,x, 1,-1),a\end{align*}).

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Calculus.2.3

Original text