<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

5.2: Sum Rectangles

Difficulty Level: At Grade Created by: CK-12
Turn In

This activity is intended to supplement Calculus, Chapter 4, Lesson 4.

Part 1 – Graphical Riemann Sums

On the HOME screen, type area() to start the Area Approximation program.

To use the program, select to view the approximation either graphically or numerically. Next, enter the equation that you are examining and press ENTER. You will be prompted for the minimum value, maximum value, and the number of steps. Then, select the approximation method and press ENTER. The approximation will be displayed on the screen. You can then select to enter another function, do another approximation or to exit the program.

Use the Area Approximation program to graphically examine functions to complete this part of the activity.

  1. For y1(x)=0.5x2+40, how do the left, midpoint, and right Riemann sums compare? Explain why.
  2. Describe what happens to the left, midpoint, and right Riemann sums as you increase the number of subintervals, n.
  3. Is the midpoint Riemann sum an over or under approximation if the graph is:
    1. increasing and concave down? ____ over _____ under
    2. increasing and concave up? ____ over _____ under
    3. decreasing and concave down? ____ over _____ under
    4. decreasing and concave up? ____ over _____ under

After graphically exploring (especially with a small number of subintervals), explain why.

Part 2 – Summation notation

Examine the function y1(x)=0.5x2+40.

  1. The thickness of each rectangle is Δx=h=ban. If a=1,b=6, and n=5. What is Δx ?
  2. Expand i=15(1y(a+(i1)1) by writing the sum of the five terms and substitute i=1,2,3,4, and 5.
  3. Explain why this is the summation notation for LEFT Riemann sums and not the RIGHT.
  4. Let y(x)=0.5x2+40,a=1, and b=6. Write the sigma notation and use the HOME screen to evaluate the left Riemann sum for 10, 20, 50, and 100 subintervals.
    1. n=10
    2. n=20
    3. n=50
    4. n=100

Extension – Area Programs

Use the Area Approximation program to answer the following questions.

  1. Let y(x)=x2,a=1, and b=6. Write the results for midpoint and trapezoid area approximations when:
    1. n=10
    2. n=100
    3. n=500
  2. Compare the above midpoint and trapezoid values with the actual area.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Description
Subjects:
Grades:
Date Created:
Feb 23, 2012
Last Modified:
Nov 04, 2014
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Calculus.5.2
Here