<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

6.2: Volume by Cross-Sections

Difficulty Level: At Grade Created by: CK-12
Turn In

This activity is intended to supplement Calculus, Chapter 5, Lesson 2.

Part 1 – Setting Up The Problem And Understanding The Concept

A first step to solve calculus volume problems is to label the point and differential. You know the volume of an object is the area of the base times its height. So the differential dV equals areadx or aready.

1. Typically the cross section is perpendicular to an axis. If the shape formed is perpendicular to the xaxis, what is the differential?

2. The function may define the base with cross sections that form a variety of shapes.

a. What is the area of a square?

b. What is the area of a semicircle?

3. Consider a function that defines the base of a solid where the cross sections perpendicular to the xaxis form equilateral triangles. Let the base of the triangle be parallel to the yaxis. What is the area of the triangle? Draw a sketch and justify your answer.

4. If the length of one of the sides of this equilateral triangle is 1 cm, calculate the area. Show your calculation.

5. Let the first quadrant region enclosed by the graph of y=xex2 and the line x=2 be the base of a solid. If the cross sections perpendicular to the xaxis are equilateral triangles, what is the volume of the solid? Show your work.

Part 2 – Homework

Questions 1 and 2 are non-calculator, exam-like problems. Show all your work. On Question 3, just show the set up and then use your calculator to find your answer.

1. Let the first quadrant region enclosed by the graph of y=1x and the line x=1 and x=4 be the base of a solid. If the cross sections perpendicular to the x axis are semicircles, what is the volume of the solid? Show your work.

2. Let the base of a solid be the first quadrant region enclosed by the xaxis, the yaxis and the graph of y=1x24. If all the cross sections perpendicular to the yaxis are squares, what is the volume of the solid? Show your work.

3. Let the base of a solid be the first quadrant region enclosed by the xaxis and one arch of the graph y=sin(x). If all cross sections perpendicular to the xaxis are squares, then approximately what is the volume of the solid? Show your set up.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Calculus.6.2
Here