<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

7.2: The Logarithmic Derivative

Difficulty Level: At Grade Created by: CK-12

This activity is intended to supplement Calculus, Chapter 6, Lesson 3.

Problem 1 – The Derivative of \begin{align*}y = \ln(x)\end{align*}

If \begin{align*}(x, y)\end{align*} is a point on \begin{align*}y = f(x)\end{align*} and \begin{align*}y = g(x)\end{align*} is the inverse of \begin{align*}f(x)\end{align*}, then \begin{align*}(y, x)\end{align*} is a point on \begin{align*}g(x)\end{align*}. We know that \begin{align*}e^0 = 1\end{align*} and \begin{align*}\ln(1) = 0\end{align*}, so \begin{align*}(0, 1)\end{align*} is a point on \begin{align*}y = e^x\end{align*} and \begin{align*}(1, 0)\end{align*} is a point on \begin{align*}y = \ln(x)\end{align*}. We could do this for several points and keep getting the same inverse results.

Thus, if \begin{align*}y = e^x\end{align*}, then \begin{align*}x = e^y\end{align*} will be equivalent to \begin{align*}y = \ln(x)\end{align*} because they are inverses of one another. Now we can take the implicit derivative with respect to \begin{align*}x\end{align*} of \begin{align*}x = e^y\end{align*}.

\begin{align*}x=e^y \rightarrow 1 = \frac{dy}{dx} \cdot e^y \rightarrow 1 = \frac{dy}{dx} \cdot x \rightarrow \frac{1}{x} = \frac{dy}{dx}\end{align*}

Use the limit command to test this formula. Be careful with your parentheses.

  • Find \begin{align*}\lim_{h \to 0} \frac{\ln(2+h)- \ln(2)}{h}\end{align*}.
  • Do the same with \begin{align*}\lim_{h \to 0} \frac{\ln(3+h)- \ln(3)}{h}\end{align*}.
  • What is \begin{align*}\lim_{h \to 0} \frac{\ln(x+h)- \ln(x)}{h} ?\end{align*}

Use the derivative command to find the derivative of the logarithmic function \begin{align*}f(x) = \ln(x)\end{align*}.

Problem 2 – The Derivative of \begin{align*}y = \log_a(x)\end{align*}

What happens if our logarithm has a base other than \begin{align*}e\end{align*}? We need to know how to take the derivative of the function \begin{align*}y = \log_a(x)\end{align*}.

First we want to compare \begin{align*}y1 = \ln(x)\end{align*} and \begin{align*}y2 = \log_2(x)\end{align*}.

To enter \begin{align*}\log_2(x)\end{align*}, use the alpha keys to spell out log.

Within the parentheses, enter the expression, then the base.

  • Graph both functions (\begin{align*}\ln(x)\end{align*} and \begin{align*}\log_2(x)\end{align*}) on the same set of axes. Sketch your graph to the right. What do you notice?

  • Do the same steps with \begin{align*}y1 = \ln(x)\end{align*} and \begin{align*}y3 = \log_4(x)\end{align*}. What do you notice?

  • Simplify the following ratios.

\begin{align*}\frac{\ln(x)}{\log_2(x)} && \frac{\ln(x)}{\log_4(x)} && \frac{\ln(x)}{\log_a(x)}\end{align*}

Sometimes the ratio \begin{align*}\frac{\ln(x)}{\log_a(x)}\end{align*} is written as \begin{align*}\ln(x) = \ln(a) \cdot \log_a(x)\end{align*}. We can rewrite this ratio as \begin{align*}\log_a(x) = \frac{\ln(x)}{\ln(a)}\end{align*} and call it an identity.

  • Graph the following functions on the same set of axes: \begin{align*}y1 = \ln(x), y2 = \ln(2) \cdot \log_2(x), y3 = \ln(3) \cdot \log_3(x)\end{align*}. What was the result?

What happens when we take the derivative of \begin{align*}y = \log_a(x)\end{align*}. Use the derivative command to find the derivatives of the functions below.

\begin{align*}f(x) = \log_2(x) && g(x) = \log_3(x) && h(x) = \log_a(x)\end{align*}

  • Do you notice a pattern?

What does \begin{align*}\log_2(e)\end{align*} equal? If we use the formula from earlier in this class, we get \begin{align*}\log_2(e) = \frac{\ln(e)}{\ln(2)} = \frac{1}{\ln(2)}\end{align*}.

Therefore, the general result is \begin{align*}y = \log_a(x) \rightarrow \frac{dy}{dx} = \frac{1}{(x \ln(a))}\end{align*}.

Problem 3 – Derivative of Exponential and Logarithmic Functions Using the Chain Rule

Now we want to take the derivative of more complicated functions:

Recall: \begin{align*}y = a^u \rightarrow \frac{dy}{dx} = a^u \ \frac{du}{dx}\end{align*} where \begin{align*}u\end{align*} depends on \begin{align*}x\end{align*}.

  • Suppose that \begin{align*}y = \log_a(u)\end{align*}, where \begin{align*}u\end{align*} depends on \begin{align*}x\end{align*}. Using the chain rule, take the derivative of this function.

Find the derivative of the following functions with the chain rule.

Identify \begin{align*}u(x)\end{align*} and \begin{align*}a\end{align*} for each function before you find the derivative.

  • \begin{align*}f(x) = 5^{(x^2)} \quad u(x)=\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \quad a =\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}f'(x) = \underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

  • \begin{align*}g(x) = e^{(x^3+2)} \quad u(x)=\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \quad a = \underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}g'(x) = \underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

  • \begin{align*}h(x) = \log_3(x^4 + 7) \quad u(x)=\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \quad a =\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}h'(x) =\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

  • \begin{align*}j(x) = \ln \left (\sqrt{x^6 + 2} \right ) \quad u(x)=\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} \quad a = \underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

\begin{align*}j'(x) =\underline{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\end{align*}

Image Attributions

Show Hide Details
Files can only be attached to the latest version of section
Reviews
Help us create better content by rating and reviewing this modality.
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Calculus.7.2

Original text