<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

8.1: Integration by Substitution

Difficulty Level: At Grade Created by: CK-12
Turn In

This activity is intended to supplement Calculus, Chapter 7, Lesson 1.

In this activity, you will explore:

  • Integration of standard forms
  • Substitution methods of integration

Use this document to record your answers. Check your answers with the Integrate command.

Problem 1 – Introduction

1. Consider the integral 2x+3dx. Let u=2x+3. Evaluate the integral using substitution.

Use the table below to guide you.

f(x)= 2x+3
u= 2x+3

2. Try using substitution to integrate sin(x)cos(x)dx. Let u=sin(x).

3. Now integrate the same integral, but let u=cos(x). How does the result compare to the one above?

4. sin(x)cos(x)dx can be rewritten as 12 sin(2x) using the Double Angle formula.

What is the result when you integrate 12 sin(2x) using substitution?

Problem 2 – Common Feature

Find the result of the following integrals using substitution.

5. x+1x2+2x+3dx

6. sin(x) ecos(x)dx

7. x4x2+1dx

8. What do these integrals have in common that makes them suitable for the substitution method?


Use trigonometric identities to rearrange the following integrals and then use the substitution method to integrate.

9. tan(x)dx

10. cos3(x)

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Date Created:
Feb 23, 2012
Last Modified:
Nov 04, 2014
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original