<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

8.1: Integration by Substitution

Difficulty Level: At Grade Created by: CK-12
Turn In

This activity is intended to supplement Calculus, Chapter 7, Lesson 1.

In this activity, you will explore:

  • Integration of standard forms
  • Substitution methods of integration

Use this document to record your answers. Check your answers with the Integrate command.

Problem 1 – Introduction

1. Consider the integral 2x+3dx. Let u=2x+3. Evaluate the integral using substitution.

Use the table below to guide you.

f(x)= 2x+3
u= 2x+3
du=
g(u)=
g(u)du=
f(x)dx=

2. Try using substitution to integrate sin(x)cos(x)dx. Let u=sin(x).

3. Now integrate the same integral, but let u=cos(x). How does the result compare to the one above?

4. sin(x)cos(x)dx can be rewritten as 12 sin(2x) using the Double Angle formula.

What is the result when you integrate 12 sin(2x) using substitution?

Problem 2 – Common Feature

Find the result of the following integrals using substitution.

5. x+1x2+2x+3dx

6. sin(x) ecos(x)dx

7. x4x2+1dx

8. What do these integrals have in common that makes them suitable for the substitution method?

Extension

Use trigonometric identities to rearrange the following integrals and then use the substitution method to integrate.

9. tan(x)dx

10. cos3(x)

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Show Hide Details
Description
Subjects:
Grades:
Date Created:
Feb 23, 2012
Last Modified:
Nov 04, 2014
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the section. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Calculus.8.1
Here