<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

8.2: Integration by Parts

Difficulty Level: At Grade Created by: CK-12

This activity is intended to supplement Calculus, Chapter 7, Lesson 2.

In this activity, you will explore:

  • product rule of differentiation
  • integration by parts

Use this document to record your answers.

Exercises

1. State the product rule for a function of the form \begin{align*}u(x)*v(x)\end{align*}u(x)v(x).

2. Apply the product rule to the function \begin{align*}\sin(x)* \ln(x)\end{align*}sin(x)ln(x).

3. Do you agree or disagree with the following statement? Explain.

\begin{align*}\int\limits \frac{d}{dx} (f(x)) dx = \frac{d}{dx} \left (\int\limits f(x)dx \right ) = f(x)\end{align*}

4. What is the integral of the left side of the product rule?

\begin{align*}\int\limits \left (\frac{d}{dx} (u(x) \cdot v(x) \right )dx = \end{align*}

5. What is the integral of the right side?

\begin{align*}\int\limits \left (u (x) \cdot \frac{dv}{dx} + v(x) \cdot \frac{du}{dx} \right )dx = \end{align*}

6. Explain the relationship between the areas shown on the graph and the following equation:

\begin{align*}\int\limits_{v_1}^{v_2} u \cdot dv = u \cdot v - \int\limits_{u_1}^{u_2} v \cdot du\end{align*}

7. Use the method of integration by parts to compute the integral of \begin{align*}\ln (x)\end{align*}.

Remember the formula for Integration by parts is \begin{align*}\int\limits u \cdot dv = u \cdot v - \int\limits v \cdot du\end{align*}

\begin{align*}& \int\limits \ln(x) \cdot 1\ dx \rightarrow u = \ln(x) \ \text{and} \ dv = 1\ dx \\ & \qquad \qquad \qquad \quad \ du = \qquad \qquad \quad v = \\ & \text{Result} = \end{align*}

Check by integration directly. (Home > F3:Calc > 2:Integrate) or (Home > \begin{align*}2^{nd}\end{align*} 7 )

Consider the function \begin{align*}f(x) = \sin(\ln(x))\end{align*}.

\begin{align*}u & = \sin(\ln(x)) \rightarrow du = \frac{\cos(\ln(x))}{x} dx \\ dv & = dx \rightarrow v = x (+C)\end{align*}

\begin{align*}\int\limits \sin(\ln(x)) \cdot 1\ dx & = x \cdot \sin(\ln(x)) - \int\limits x \cdot \frac{\cos(\ln(x))}{x} dx (+C) \\ & = x \cdot \sin(\ln(x)) - \int\limits \cos (\ln(x))dx (+C)\end{align*}

8. Find \begin{align*}\int\limits \cos (\ln(x))dx\end{align*}.

\begin{align*}u & = && du = && dv = && v = \\ \int\limits \cos (\ln(x))dx & =\end{align*}

9. Substitute the result for \begin{align*}\cos(\ln(x))\end{align*} into the result for \begin{align*}\sin(\ln(x))\end{align*}.

\begin{align*}u & = && du = && dv = && v = \\ \int\limits \sin (\ln(x))dx & =\end{align*}

10. Use integration by parts to solve the following. If you need to use integration by parts more than once, do so. Check your result.

a. \begin{align*}\int\limits \tan^{-1}(x)\ dx\end{align*}

b. \begin{align*}\int\limits x^2 \cdot e^x \ dx\end{align*}

c. \begin{align*}\int\limits x \cdot \tan^{-1}(x) \ dx\end{align*}

d. \begin{align*}\int\limits x \cdot \cos (2x+1)\ dx\end{align*}

11. (Extension 1) Does it matter in which order \begin{align*}u(x)\end{align*} and \begin{align*}v(x)\end{align*} are selected for the method of integration by parts?

12. (Extension 2) Is there likely to be an integration rule based upon the quotient rule just as Integration by Parts was based upon the product rule?

Image Attributions

Show Hide Details
Description
Subjects:
Grades:
Date Created:
Feb 23, 2012
Last Modified:
Nov 04, 2014
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the section. Click Customize to make your own copy.
Reviews
100 % of people thought this content was helpful.
0
Loading reviews...
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Calculus.8.2