<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# 6.4: Hey Ortho! What’s your Altitude?

Difficulty Level: At Grade Created by: CK-12

This activity is intended to supplement Geometry, Chapter 5, Lesson 4.

## Problem 1 – Exploring the Altitude of a Triangle

1. Define Altitude of a Triangle.

Draw the altitudes of the triangles in the Cabri Jr. files ACUTE, OBTUSE, and RIGHT and then sketch the altitudes on the triangles below. To do this, start the Cabri Jr. application by pressing APPS and selecting CabriJr. Open the file ACUTE by pressing Y=\begin{align*}Y=\end{align*}, selecting Open..., and selecting the file. Construct the altitude of ABC\begin{align*}\triangle{ABC}\end{align*} on your handheld by pressing ZOOM, selecting Perp., clicking on the side of the triangle, and then clicking on the opposite vertex. Repeat for the files OBTUSE and RIGHT.

2. Draw the altitudes for ABC\begin{align*}\triangle{ABC}\end{align*}, DEF\begin{align*}\triangle{DEF}\end{align*}, and GHJ\begin{align*}\triangle{GHJ}\end{align*} below.

3. Fill in the blanks of the following statements about whether the altitude of a triangle is inside, outside, or on a side of the triangle.

a. For the acute ABC\begin{align*}\triangle{ABC}\end{align*}, the altitude of vertex B\begin{align*}B\end{align*} is ________________ the triangle.

b. For the obtuse DEF\begin{align*}\triangle{DEF}\end{align*}, the altitude of vertex E\begin{align*}E\end{align*} is _______________ the triangle.

c. For the right GHJ\begin{align*}\triangle{GHJ}\end{align*}, the altitude of vertex H\begin{align*}H\end{align*} is _________________ the triangle.

## Problem 2 – Exploring the Orthocenter

Open the file TRIANGLE. You are given ABC\begin{align*}\triangle{ABC}\end{align*}. Construct the altitude of each vertex of the triangle. Use your constructions to answer the following questions.

4. What do you notice about the altitudes of all three vertices?

5. The point of concurrency for the altitudes is the orthocenter. Create and label this point R\begin{align*}R\end{align*}. Is it possible to move vertex B\begin{align*}B\end{align*} so that the orthocenter is on a side of ABC\begin{align*}\triangle{ABC}\end{align*}? If so, what kind of triangle is ABC\begin{align*}ABC\end{align*} in this case?

6. Can you move vertex B\begin{align*}B\end{align*} so that the orthocenter is inside of ABC\begin{align*}\triangle{ABC}\end{align*}? If so, what kind of triangle is ABC\begin{align*}ABC\end{align*} in this case?

7. Can you move vertex B\begin{align*}B\end{align*} so that the orthocenter is outside of ABC\begin{align*}\triangle{ABC}\end{align*}? If so, what kind of triangle is ABC\begin{align*}ABC\end{align*} in this case?

## Problem 3 – Exploring the Altitude of an Equilateral Triangle

Open the file EQUILATE. You are given an equilateral triangle ABC\begin{align*}ABC\end{align*} with altitude BD¯¯¯¯¯¯¯¯\begin{align*}\overline{BD}\end{align*} and point P\begin{align*}P\end{align*} on the inside of the triangle. Find the distance from point P\begin{align*}P\end{align*} to the three sides of the triangle using the Length tool found by pressing GRAPH and selecting Measure > D. & Length. Also, find the length of BD¯¯¯¯¯¯¯¯\begin{align*}\overline{BD}\end{align*} and answer the following questions.

8. Use the Calculate tool to calculate EP+FP+GP\begin{align*}EP + FP + GP\end{align*}. Move point A\begin{align*}A\end{align*} to 2 different positions and record the measurements in the table below. Next, move point P\begin{align*}P\end{align*} to 2 different positions and record the measurements in the table below.

Position 1st\begin{align*}1^{st}\end{align*} position 2nd\begin{align*}2^{nd}\end{align*} position 3rd\begin{align*}3^{rd}\end{align*} position 4th\begin{align*}4^{th}\end{align*} position
BD\begin{align*}BD\end{align*}
EP+FP+GP\begin{align*}EP+FP+GP\end{align*}

9. What is the relationship between the measurements of BD\begin{align*}BD\end{align*} and EP+FP+GP\begin{align*}EP + FP + GP\end{align*}?

10. Complete the following statement: The sum of the distances from any point in the interior of an equilateral triangle to the sides of the triangle is ________________.

## Problem 4 – Exploring the Orthocenter of a Medial Triangle

The medial triangle is the triangle formed by connecting the midpoints of the sides of a triangle.

Open the file MEDIAL2. You are given a triangle, its medial triangle, and the orthocenter of the medial triangle.

11. What triangle center (centroid, circumcenter, incenter, or orthocenter) for ABC\begin{align*}\triangle{ABC}\end{align*} is the orthocenter, O\begin{align*}O\end{align*}, of the medial DEF\begin{align*}\triangle{DEF}\end{align*}?

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Show Hide Details
Description
Tags:
Subjects: