<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation

8.2: Side-Splitter Theorem

Difficulty Level: At Grade Created by: CK-12
Turn In

This activity is intended to supplement Geometry, Chapter 7, Lesson 5.

Problem 1 – Side Splitter Theorem

In SIDESP1.8xv, you are given \begin{align*}\triangle{CAR}\end{align*}CAR. You are also given \begin{align*}\overline{DS}\end{align*}DS¯¯¯¯¯¯¯ which is parallel to side \begin{align*}CR\end{align*}CR.

1. Move point \begin{align*}D\end{align*}D to 2 different positions and point \begin{align*}A\end{align*}A to 2 different positions and collect the data in the table below. Calculate the ratios of \begin{align*}AD\end{align*}AD to \begin{align*}DC\end{align*}DC and \begin{align*}AS\end{align*}AS to \begin{align*}SR\end{align*}SR for each position and record the calculation in the table below.

Position \begin{align*}AD\end{align*}AD \begin{align*}DC\end{align*}DC \begin{align*}AS\end{align*}AS \begin{align*}SR\end{align*}SR \begin{align*}\frac{AD}{DC}\end{align*}ADDC \begin{align*}\frac{AS}{SR}\end{align*}ASSR
1
2
3
4

2. Make some observations about the ratios of the sides in the triangle. What relationships do you notice?

3. Use the table to complete the following conjecture about the relationship between \begin{align*}\frac{AD}{DC}\end{align*}ADDC and \begin{align*}\frac{AS}{SR}\end{align*}ASSR. If side \begin{align*}DS\end{align*}DS is parallel to side \begin{align*}CR\end{align*}CR, then _____________.

4. In SIDESP2.8xv, drag point \begin{align*}A\end{align*}A. Make some observations about the relationship of the ratios \begin{align*}\frac{AD}{DC}\end{align*}ADDC and \begin{align*}\frac{AS}{SR}\end{align*}ASSR?

5. In SIDESP2.8xv, drag point \begin{align*}D\end{align*}D. Make some observations about the relationship of the ratios \begin{align*}\frac{AD}{DC}\end{align*}ADDC and \begin{align*}\frac{AS}{SR}\end{align*}ASSR?

6. Why are the results different when moving point \begin{align*}A\end{align*}A versus moving point \begin{align*}D\end{align*}D?

Problem 2 – Application of the Side-Splitter Theorem

7. Find the value of \begin{align*}x\end{align*}x.

8. Find the value of \begin{align*}x\end{align*}x.

Problem 3 – Extension of the Side-Splitter Theorem

For this problem, we will look at a corollary of the side-splitter theorem.

9. In SIDESP3.8xv, move point \begin{align*}U\end{align*}U to 2 different positions and point \begin{align*}N\end{align*}N to 2 different positions and collect the data in the table on the accompanying worksheet.

Position \begin{align*}RN\end{align*}RN \begin{align*}NO\end{align*}NO \begin{align*}EA\end{align*}EA \begin{align*}AS\end{align*}AS \begin{align*}\frac{RN}{NO}\end{align*}RNNO \begin{align*}\frac{EA}{AS}\end{align*}EAAS
1
2
3
4

10. What do you notice about the ratios \begin{align*}\frac{RN}{NO}\end{align*}RNNO and \begin{align*}\frac{EA}{AS}\end{align*}EAAS?

11. Use the table to complete the following conjecture about the relationship between \begin{align*}\frac{RN}{NO}\end{align*}RNNO and \begin{align*}\frac{EA}{AS}\end{align*}EAAS. If lines \begin{align*}RE\end{align*}RE, \begin{align*}NA\end{align*}NA, and \begin{align*}OS\end{align*}OS are parallel and cut by two transversals, then ________________________.

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Show Hide Details
Description
Subjects:
Grades:
Date Created:
Feb 23, 2012
Last Modified:
Nov 03, 2014
Files can only be attached to the latest version of section
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original
 
TI.MAT.ENG.SE.1.Geometry.8.2
Here