<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# 9.3: Ratios of Right Triangles

Difficulty Level: At Grade Created by: CK-12

This activity is intended to supplement Geometry, Chapter 8, Lesson 5.

## Problem 1 – Exploring Right Triangle Trigonometry

We will begin this activity by looking at the definitions of the sine, cosine, and tangent of a right triangle. Start the Learning Check application by pressing APPS and selecting LearnChk. Open the file Right Triangle Trigonometry. You are given the definition for the sine, cosine, and tangent of a right triangle. Copy the definitions onto your worksheet.

1. What is the definition of \begin{align*}\sin A\end{align*} for right \begin{align*}\triangle{ABC}\end{align*}?

2. What is the definition of \begin{align*}\cos A\end{align*} for right \begin{align*}\triangle{ABC}\end{align*}?

3. What is the definition of \begin{align*}\tan A\end{align*} for right \begin{align*}\triangle{ABC}\end{align*}?

Answer the following questions about sine, cosine, and tangent for \begin{align*}\triangle{ABC}\end{align*}.

4. What is \begin{align*}\sin A\end{align*}?

5. What is \begin{align*}\cos A\end{align*}?

6. What is \begin{align*}\tan A\end{align*}?

7. What is \begin{align*}\sin B\end{align*}?

8. What is \begin{align*}\cos B\end{align*}?

9. What is \begin{align*}\tan B\end{align*}?

## Problem 2 – Exploring the Sine Ratio of a Right Triangle

For this problem, we will investigate the sine ratio. Start the Cabri Jr. application by pressing \begin{align*}A\end{align*} and selecting CabriJr. Open the file TRIG by pressing \begin{align*}Y=\end{align*}, selecting Open..., and selecting the file. You are given right triangle \begin{align*}ABC\end{align*}.

10. Grab and drag point \begin{align*}B\end{align*}. Record the data you collected in the table on the next page. Leave the last column blank for now.

Position \begin{align*}BC\end{align*} \begin{align*}AB\end{align*} \begin{align*}\frac{BC}{AB}\end{align*} \begin{align*}\sin^{-1}\frac{BC}{AB}\end{align*}
1
2
3
4

11. What do you notice about the ratio of \begin{align*}BC\end{align*} to \begin{align*}AB\end{align*}?

12. Did \begin{align*}\angle{A}\end{align*} change when you moved point \begin{align*}B\end{align*} in \begin{align*}\triangle{ABC}\end{align*}?

Because the ratio remains the same and \begin{align*}\angle{A}\end{align*} remains fixed, we can use the ratio of \begin{align*}BC\end{align*} to \begin{align*}AB\end{align*} to find the measurement of \begin{align*}\angle{A}\end{align*}. To do this, we will use the definition of sine and the inverse of sine. By definition, \begin{align*}\sin A = \frac{BC}{AB}\end{align*}. To find the measurement of \begin{align*}\angle{A}\end{align*}, we use the inverse of sine to get the formula \begin{align*}A = \sin^{-1}\frac{BC}{AB}\end{align*}. Exit Cabri Jr. and go to the home screen to find the inverse sine of \begin{align*}\frac{BC}{AB}\end{align*}. Record this into the last column of the table above.

13. What is the measurement of \begin{align*}\angle{A}\end{align*}?

14. What is the measurement of \begin{align*}\angle{B}\end{align*}?

## Problem 3 – Exploring the Cosine Ratio of a Right Triangle

For this problem, we will investigate the sine ratio. Start the Cabri Jr. application and open the file TRIG. You are given right triangle \begin{align*}ABC\end{align*}.

15. Collect data for four positions of point \begin{align*}B\end{align*} like that which was done in Problem 2.

Position \begin{align*}AC\end{align*} \begin{align*}AB\end{align*} \begin{align*}\frac{AC}{AB}\end{align*} \begin{align*}\cos^{-1}\frac{AC}{AB}\end{align*}
1
2
3
4

Because the ratio remains the same, and \begin{align*}\angle{A}\end{align*} remains fixed, we can use the ratio of \begin{align*}AC\end{align*} to \begin{align*}AB\end{align*} to find the measurement of \begin{align*}\angle{A}\end{align*}. To do this, we will use the definition of cosine and the inverse of cosine. By definition, \begin{align*}\cos A = \frac{AC}{AB}\end{align*}. To find the measurement of \begin{align*}\angle{A}\end{align*}, we use the inverse of cosine to get the formula \begin{align*}A = \cos^{-1}\frac{AC}{AB}\end{align*}. Exit Cabri Jr. and go to the home screen to find the inverse cosine of \begin{align*}\frac{AC}{AB}\end{align*}. Record this into the last column of the table above.

16. What is the measurement of \begin{align*}\angle{A}\end{align*}?

17. What is the measurement of \begin{align*}\angle{B}\end{align*}?

18. How would you solve an equation of the form \begin{align*}\tan A = \frac{BC}{AC}\end{align*}?

## Problem 4 – Applying the Sine, Cosine, and Tangent Ratio of a Right Triangle

Find and label the measure of each angle given two sides of the right triangle.

19.

20.

21.

22.

23.

24.

25.

26.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Show Hide Details
Description
Tags:
Subjects: