# 6.1: Analyzing Heron’s Formula

Difficulty Level: At Grade Created by: CK-12

This activity is intended to supplement Trigonometry, Chapter 5, Lesson 2.

## Problem 1 - Consider a 3, 4, 5 right triangle.

• Draw the triangle.
• Find the area using A=12bh\begin{align*}A=\frac{1}{2}bh\end{align*}.
• Consider Heron’s Formula, A=s(sa)(sb)(sc)\begin{align*}A=\sqrt{s(s-a)(s-b)(s-c)}\end{align*}

In \begin{align*}Y=\end{align*}, plug into \begin{align*}Y1= \sqrt{x(x-3)(x-4)(x-5)}\end{align*}. Zoom in by changing the window. Press WINDOW and change the parameters to the right.

Press GRAPH.

WINDOW

\begin{align*}Xmin = -1\end{align*}

\begin{align*}Xmax = 8\end{align*}

\begin{align*}Xscl = 1\end{align*}

\begin{align*}Ymin = -1\end{align*}

\begin{align*}Ymax = 10\end{align*}

\begin{align*}Yscl = 1\end{align*}

\begin{align*}Xres = 1\end{align*}

• Describe the graph. Does it have any \begin{align*}x\end{align*} or \begin{align*}y\end{align*} intercepts?
• In \begin{align*}Y2\end{align*}, type \begin{align*}Y2=\frac{1}{2} \cdot 3 \cdot 4\end{align*} or 6, the area of this triangle. Press GRAPH. Do the two functions intersect? If so, write the point(s) below.
• \begin{align*}Y1\end{align*} is Heron’s formula with \begin{align*}a = 3\end{align*}, \begin{align*}b = 4\end{align*}, and \begin{align*}c = 5\end{align*} and \begin{align*}s = x\end{align*}. What do the point(s) above tell us about this specific Heron’s formula? What do \begin{align*}(x, \ y)\end{align*} represent?

## Problem 2

Repeat the steps from Problem 1 with the triangle below.

### Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes

Show Hide Details
Description
Tags:
Subjects: