Skip Navigation

6.1: Analyzing Heron’s Formula

Difficulty Level: At Grade Created by: CK-12
Turn In

This activity is intended to supplement Trigonometry, Chapter 5, Lesson 2.

Problem 1 - Consider a 3, 4, 5 right triangle.

  • Draw the triangle.
  • Find the area using \begin{align*}A=\frac{1}{2}bh\end{align*}A=12bh.
  • Consider Heron’s Formula, \begin{align*}A=\sqrt{s(s-a)(s-b)(s-c)}\end{align*}A=s(sa)(sb)(sc)

In \begin{align*}Y=\end{align*}, plug into \begin{align*}Y1= \sqrt{x(x-3)(x-4)(x-5)}\end{align*}. Zoom in by changing the window. Press WINDOW and change the parameters to the right.

Press GRAPH.


\begin{align*}Xmin = -1\end{align*}

\begin{align*}Xmax = 8\end{align*}

\begin{align*}Xscl = 1\end{align*}

\begin{align*}Ymin = -1\end{align*}

\begin{align*}Ymax = 10\end{align*}

\begin{align*}Yscl = 1\end{align*}

\begin{align*}Xres = 1\end{align*}

  • Describe the graph. Does it have any \begin{align*}x\end{align*} or \begin{align*}y\end{align*} intercepts?
  • In \begin{align*}Y2\end{align*}, type \begin{align*}Y2=\frac{1}{2} \cdot 3 \cdot 4\end{align*} or 6, the area of this triangle. Press GRAPH. Do the two functions intersect? If so, write the point(s) below.
  • \begin{align*}Y1\end{align*} is Heron’s formula with \begin{align*}a = 3\end{align*}, \begin{align*}b = 4\end{align*}, and \begin{align*}c = 5\end{align*} and \begin{align*}s = x\end{align*}. What do the point(s) above tell us about this specific Heron’s formula? What do \begin{align*}(x, \ y)\end{align*} represent?

Problem 2

Repeat the steps from Problem 1 with the triangle below.

Are your findings the same?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Show More

Image Attributions

Show Hide Details
Date Created:
Feb 23, 2012
Last Modified:
Nov 04, 2014
Save or share your relevant files like activites, homework and worksheet.
To add resources, you must be the owner of the section. Click Customize to make your own copy.
Please wait...
Please wait...
Image Detail
Sizes: Medium | Original