# 7.1: Polar Necessities

**At Grade**Created by: CK-12

*This activity is intended to supplement Trigonometry, Chapter 6, Lesson 4.*

## Plotting Coordinates & Exploring Polar Graphs

The coordinates of a polar curve are given as \begin{align*}(\theta, \ r)\end{align*}.

1. Plot and label the following points on the graph below: \begin{align*}A(15^\circ, \ 4), \ B(270^\circ, \ 5), \ C \left( \frac{\pi}{6}, 3\right)\end{align*} and \begin{align*}D \left( \frac{3\pi}{2},6\right)\end{align*} .

2. If \begin{align*}r(\theta) = \cos(\theta)\end{align*}, what is \begin{align*}r\left(\frac{\pi}{3}\right)\end{align*} ?

3. Graph \begin{align*}r(\theta) = 2 - 2\cos(\theta)\end{align*}. What is the shape of the graph?

4. Using your graphing calculator, explore polar graphs by changing the equation from #3. Try to generate the graphs listed below. Which of the graphs were you able to make? Write the equation next to the graph shape.

- circle
- rose with even number of petals
- rose with odd number of petals
- limaçon with an inner loop

### Notes/Highlights Having trouble? Report an issue.

Color | Highlighted Text | Notes | |
---|---|---|---|

Show More |

### Image Attributions

**Save or share your relevant files like activites, homework and worksheet.**

To add resources, you must be the owner of the section. Click Customize to make your own copy.