<meta http-equiv="refresh" content="1; url=/nojavascript/">

# Calculations of Free Energy and Keq

## Demonstrates equations used to relate free energy and equilibrium constants.

0%
Progress
Practice Calculations of Free Energy and Keq
Progress
0%
Calculations of Free Energy and Keq

Credit: User:Bothar/Wikipedia
Source: http://commons.wikimedia.org/wiki/File:WonderCaves_Stalagmites.JPG

What are these formations called when they point down?

Formation of stalactites (pointing down) and stalagmites (pointing up) is a complex process. Solutions of minerals drip down and absorb carbon dioxide as water flows through the cave. Calcium carbonate dissolves in this liquid and redeposits on the rock as the carbon dioxide is dissipated into the environment.

### Equilibrium Constant and ΔG\begin{align*}\Delta G\end{align*}

At equilibrium the ΔG\begin{align*}\Delta G\end{align*} for a reversible reaction is equal to zero. Keq\begin{align*}K_{eq}\end{align*} relates the concentrations of all substances in the reaction at equilibrium. Therefore we can write (through a more advanced treatment of thermodynamics) the following equation:

ΔG=RTlnKeq

The variable R\begin{align*}R\end{align*} is the ideal gas constant (8.314 J/K • mol), T\begin{align*}T\end{align*} is the Kelvin temperature, and lnKeq\begin{align*}\ln K_{eq}\end{align*} is the natural logarithm of the equilibrium constant.

When Keq\begin{align*}K_{eq}\end{align*} is large, the products of the reaction are favored and the negative sign in the equation means that the ΔG\begin{align*}\Delta G^\circ\end{align*} is negative. When Keq\begin{align*}K_{eq}\end{align*} is small, the reactants of the reaction are favored. The natural logarithm of a number less than one is negative and so the sign of ΔG\begin{align*}\Delta G^\circ\end{align*} is positive. The Table below summarizes the relationship of ΔG\begin{align*}\Delta G^\circ\end{align*} to Keq\begin{align*}K_{eq}\end{align*}:

 Keq\begin{align*}K_{eq}\end{align*} lnKeq\begin{align*}\ln K_{eq}\end{align*} ΔG∘\begin{align*}\Delta G^\circ\end{align*} Description >1 positive negative Products are favored at equilibrium. 1 0 0 Reactants and products are equally favored. <1 negative positive Reactants are favored at equilibrium.

Knowledge of either the standard free energy change or the equilibrium constant for a reaction allows for the calculation of the other. The following two sample problems illustrate each case.

#### Sample Problem: Gibbs Free Energy and the Equilibrium Constant

The formation of nitrogen monoxide from nitrogen and oxygen gases is a reaction that strongly favors the reactants at 25°C.

N2(g)+O2(g)2NO(g)

The actual concentrations of each gas would be difficult to measure, and so the Keq\begin{align*}K_{eq}\end{align*} for the reaction can more easily calculated from the ΔG\begin{align*}\Delta G^\circ\end{align*}, which is equal to 173.4 kJ/mol.

Step 1: List the known values and plan the problem.

Known

• ΔG=+173.4 kJ/mol\begin{align*}\Delta G^\circ=+173.4 \ \text{kJ} / \text{mol}\end{align*}
• R=8.314 J/Kmol\begin{align*}R=8.314 \ \text{J} / \text{K} \cdot \text{mol}\end{align*}
• T=25C=298 K\begin{align*}T=25^\circ \text{C}=298 \ \text{K}\end{align*}

Unknown

• Keq=?\begin{align*}K_{eq}=?\end{align*}

In order to make the units agree, the value of ΔG\begin{align*}\Delta G^\circ\end{align*} will need to be converted to J/mol (173,400 J/mol). To solve for Keq\begin{align*}K_{eq}\end{align*}, the inverse of the natural logarithm, ex\begin{align*}e^x\end{align*}, will be used.

Step 2: Solve.

ΔGlnKeqKeq=RTlnKeq=ΔGRT=eΔGRT=e173,400 J/mol8.314 J/Kmol(298 K)=4.0×1031

The large positive free energy change leads to a Keq\begin{align*}K_{eq}\end{align*} value that is extremely small. Both lead to the conclusion that the reactants are highly favored and very few product molecules are present at equilibrium.

#### Sample Problem: Free Energy from Ksp\begin{align*}K_{sp}\end{align*}

The solubility product constant (Ksp)\begin{align*}(K_{sp}) \end{align*} of lead(II) iodide is 1.4 × 10-8 at 25°C. Calculate ΔG\begin{align*}\Delta G^\circ\end{align*} for the dissociation of lead(II) iodide in water.

PbI2(s)Pb2+(aq)+2I(aq)

Step 1: List the known values and plan the problem.

Known

• Keq=Ksp=1.4×108\begin{align*}K_{eq}=K_{sp}=1.4 \times 10^{-8}\end{align*}
• R=8.314 J/Kmol\begin{align*}R=8.314 \ \text{J} / \text{K} \cdot \text{mol}\end{align*}
• T=25C=298 K\begin{align*}T=25^\circ \text{C}=298 \ \text{K}\end{align*}

Unknown

• ΔG=? kJ/mol\begin{align*}\Delta G^\circ=? \ \text{kJ} / \text{mol}\end{align*}

The equation relating ΔG\begin{align*}\Delta G^\circ\end{align*} to Keq\begin{align*}K_{eq}\end{align*} can be solved directly.

Step 2: Solve.

ΔG=RTlnKeq=8.314 J/Kmol(298 K)ln(1.4×108)=45,000 J/mol=45 kJ/mol

The large, positive ΔG\begin{align*}\Delta G^\circ\end{align*} indicates that the solid lead(II) iodide is nearly insoluble and so very little of the solid is dissociated at equilibrium.

#### Summary

• The relationship between ΔG\begin{align*}\Delta G \end{align*} and Keq\begin{align*}K_{eq}\end{align*} is described.
• Calculations involving these two parameters are shown.

#### Practice

Questions

1. What is the difference between ΔG\begin{align*}\Delta G \end{align*} and ΔG\begin{align*}\Delta G^\circ\end{align*}?
2. At equilibrium, why does the equation between free energy and equilibrium constant reduce to ΔG=RTlnKeq\begin{align*}\Delta G^\circ = -RT \ln K_{eq}\end{align*} ?
3. What other equilibrium units could we use?

#### Review

Questions

1. When Keq\begin{align*}K_{eq}\end{align*} is large, what will be the sign of ΔG\begin{align*}\Delta G \end{align*}?
2. When Keq\begin{align*}K_{eq}\end{align*} is small, are reactants or products favored?
3. What does R\begin{align*}R\end{align*} stand for?