<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Cyclic Hydrocarbons

Structure and function of molecules where the carbon chain forms a ring.

Atoms Practice
Estimated6 minsto complete
Practice Cyclic Hydrocarbons
This indicates how strong in your memory this concept is
Estimated6 minsto complete
Practice Now
Turn In
Cyclic Hydrocarbons

Nylon balloons are synthesized starting from benzene

Credit: User:RiseRover/Wikipedia
Source: http://commons.wikimedia.org/wiki/File:Balloonsanimals.jpg
License: CC BY-NC 3.0

Going from benzene to balloons

Although cyclohexane can be isolated from petroleum products, a major source of this chemical is the hydrogenation of benzene. Much of the cyclohexane produced is used to manufacture intermediates for the production of nylon. The nylon balloons pictured above no doubt had their start in a chemical plant where hydrogen gas and benzene were reacted at high temperatures to form cyclohexane. This cycloalkane then undergoes nitration to begin the process of forming the long strands of nylon that can be made into balloons, ropes, clothing, and many other useful products.

Cyclic Hydrocarbons

A cyclic hydrocarbon is a hydrocarbon in which the carbon chain joins to itself in a ring. A cycloalkane is a cyclic hydrocarbon in which all of the carbon-carbon bonds are single bonds. Like other alkanes, cycloalkanes are saturated compounds. Cycloalkanes have the general formula of CnH2n. The simplest cycloalkane is cyclopropane, a three-carbon ring.

Cyclopropane is the simplest alkane

Credit: Structure: User:Benrr101/Wikimedia Commons; Triangle: Ben Mills (Wikimedia: Benjah-bmm27)
Source: Structure: http://commons.wikimedia.org/wiki/File:Cyclopropane-stereo.svg; Triangle: http://commons.wikimedia.org/wiki/File:Cyclopropane-skeletal.png
License: CC BY-NC 3.0

Cyclopropane is the simplest cycloalkane. Its highly strained geometry makes it rather unstable and highly reactive.[Figure2]

The structural formulas of cyclic hydrocarbons can be represented in multiple ways, two of which are shown above. Each atom can be shown as in the structure on the left from Figure above. A convenient shorthand is to omit the element symbols and only show the shape, as in the triangle on the right. Carbon atoms are understood to be the vertices of the triangle.

The carbon atoms in cycloalkanes are still sp3 hybridized, with an ideal bond angle of 109.5°. However, an examination of the cyclopropane structure shows that the triangular structure results in a C-C-C bond angle of 60°. This deviation from the ideal angle is called ring strain and makes cyclopropane a fairly unstable and reactive molecule. Ring strain is decreased for cyclobutane, with a bond angle of 90°, but is still significant. Cyclopentane has a bond angle of about 108°C. This minimal ring strain for cyclopentane makes it a more stable compound.

Structure of cyclobutane and cyclopentane

Credit: CK-12 Foundation - Joy Sheng
License: CC BY-NC 3.0

Cyclohexane is a six-carbon cycloalkane shown below.

Various representations of the structure of cyclohexane

Credit: CK-12 Foundation - Joy Sheng, using structure by Ben Mills (Wikimedia: Benjah-bmm27)
Source: Structure: http://commons.wikimedia.org/wiki/File:Cyclohexane-3D-balls-B.png
License: CC BY-NC 3.0

All three of the depictions of cyclohexane are somewhat misleading because the molecule is not planar. In order to reduce the ring strain and attain a bond angle of approximately 109.5°, the molecule is puckered. The puckering of the ring means that every other carbon atom is above and below the plane. Figure below shows two possibilities for the puckered cyclohexane molecule. Each of the structures is called a conformation. The conformation on the right is called the boat conformation, while the one on the left is called the chair conformation.

Chair and boat conformations of cyclohexane

Credit: User:Jü/Wikimedia Commons
Source: http://commons.wikimedia.org/wiki/File:Chair_Boat_Conformers_Formulae_V.1.svg
License: CC BY-NC 3.0

Chair (left) and boat (right) conformations for cyclohexane.[Figure5]

While both conformations reduce the ring strain compared to a planar molecule, the chair is preferred. This is because the chair conformation results in fewer repulsive interactions between the hydrogen atoms. However, interconversion readily occurs between the two conformations.

Larger cycloalkanes also exist, but are less common. Cyclic hydrocarbons may also be unsaturated. A cycloalkene is a cyclic hydrocarbon with at least one carbon-carbon double bond. A cycloalkyne is a cyclic hydrocarbon with at least one carbon-carbon triple bond. Shown below are the simplified structural formulas for cyclohexene and cyclooctyne.

Examples of a cycloalkene and a cycloalkyne

Credit: CK-12 Foundation - Joy Sheng
License: CC BY-NC 3.0


  1. Why is cyclopropane so reactive?
  2. Why is cyclopentane stable?
  3. Name the two forms of cyclohexane.

    Notes/Highlights Having trouble? Report an issue.

    Color Highlighted Text Notes
    Please to create your own Highlights / Notes
    Show More

    Image Attributions

    1. [1]^ Credit: User:RiseRover/Wikipedia; Source: http://commons.wikimedia.org/wiki/File:Balloonsanimals.jpg; License: CC BY-NC 3.0
    2. [2]^ Credit: Structure: User:Benrr101/Wikimedia Commons; Triangle: Ben Mills (Wikimedia: Benjah-bmm27); Source: Structure: http://commons.wikimedia.org/wiki/File:Cyclopropane-stereo.svg; Triangle: http://commons.wikimedia.org/wiki/File:Cyclopropane-skeletal.png; License: CC BY-NC 3.0
    3. [3]^ Credit: CK-12 Foundation - Joy Sheng; License: CC BY-NC 3.0
    4. [4]^ Credit: CK-12 Foundation - Joy Sheng, using structure by Ben Mills (Wikimedia: Benjah-bmm27); Source: Structure: http://commons.wikimedia.org/wiki/File:Cyclohexane-3D-balls-B.png; License: CC BY-NC 3.0
    5. [5]^ Credit: User:Jü/Wikimedia Commons; Source: http://commons.wikimedia.org/wiki/File:Chair_Boat_Conformers_Formulae_V.1.svg; License: CC BY-NC 3.0
    6. [6]^ Credit: CK-12 Foundation - Joy Sheng; License: CC BY-NC 3.0

    Explore More

    Sign in to explore more, including practice questions and solutions for Cyclic Hydrocarbons.
    Please wait...
    Please wait...
    Add Note
    Please to create your own Highlights / Notes