<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation


Introduces structure and formation of lipid bilayers in cells.

Atoms Practice
Estimated3 minsto complete
Practice Phospholipids
This indicates how strong in your memory this concept is
Estimated3 minsto complete
Practice Now
Turn In

Diagram illustrating the lipid bilayer hypothesis for anesthetics

Credit: User:Akuznetsova/Wikimedia Commons
Source: http://commons.wikimedia.org/wiki/File:Lipid_bilayer_expansion_hypothesis_of_anesthetic_effect.png
License: CC BY-NC 3.0

Do you feel anything now?

When you go to the dentist to get a tooth pulled, you really don’t want to feel any pain. The dentist injects an anesthetic into your gum and it eventually becomes numb. One theory as to why anesthetics work deals with the movement of ions across the cell membrane. The anesthetic gets into the membrane structure and causes shifts in how ions move across the membrane. If ion movement is disrupted, nerve impulses will not be transmitted and you will not sense pain – at least not until the anesthetic wears off.


A phospholipid is a lipid that contains a phosphate group and is a major component of cell membranes. A phospholipid consists of a hydrophilic (water-loving) head and hydrophobic (water-fearing) tail (see Figure below). The phospholipid is essentially a triglyceride in which a fatty acid has been replaced by a phosphate group of some sort.

Structure of a phospholipid

Credit: CK-12 Foundation - Joy Sheng
License: CC BY-NC 3.0

A phospholipid consists of a head and a tail. The “head” of the molecule contains the phosphate group and is hydrophilic, meaning that it will dissolve in water. The “tail” of the molecule is made up of two fatty acids, which are hydrophobic and do not dissolve in water.[Figure2]

Following the rule of “like dissolves like”, the hydrophilic head of the phospholipid molecule dissolves readily in water. The long fatty acid chains of a phospholipid are nonpolar and thus avoid water because of their insolubility. In water, phospholipids spontaneously form a double layer called a lipid bilayer in which the hydrophobic tails of phospholipid molecules are sandwiched between two layers of hydrophilic heads (see Figure below). In this way, only the heads of the molecules are exposed to the water, while the hydrophobic tails interact only with each other.

Basic structure of a lipid bilayer

Credit: Mariana Ruiz Villarreal (Wikimedia: LadyofHats), modified by CK-12 Foundation
Source: http://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg
License: CC BY-NC 3.0

In a water solution, phospholipids form a bilayer where the hydrophobic tails point towards each other on the interior and only the hydrophilic heads are exposed to the water.[Figure3]

Phospholipid bilayers are critical components of cell membranes. The lipid bilayer acts as a barrier to the passage of molecules and ions into and out of the cell. However, an important function of the cell membrane is to allow selective passage of certain substances into and out of cells. This is accomplished by the embedding of various protein molecules in and through the lipid bilayer (see Figure below). These proteins form channels through which certain specific ions and molecules are able to move. Many membrane proteins also contain attached carbohydrates on the outside of the lipid bilayer, allowing it to form hydrogen bonds with water.

Structure of a phospholipid cell membrane

Credit: Mariana Ruiz Villarreal (Wikimedia: LadyofHats), modified by CK-12 Foundation
Source: http://commons.wikimedia.org/wiki/File:Cell_membrane_detailed_diagram_en.svg
License: CC BY-NC 3.0

The phospholipid bilayer of a cell membrane contains embedded protein molecules which allow for selective passage of ions and molecules through the membrane.[Figure4]

Science Friday: Candy Corn in Space

Candy corn is a very tasty treat. In this video by Science Friday, astronaut Don Pettit uses Candy Corn to demonstrate the effects of hydrophobic and hydrophilic interactions.


  1. What is a phospholipid?
  2. Which part of the phospholipid molecule is water-soluble?
  3. Which part is not water-soluble?

    Notes/Highlights Having trouble? Report an issue.

    Color Highlighted Text Notes
    Please to create your own Highlights / Notes
    Show More

    Image Attributions

    1. [1]^ Credit: User:Akuznetsova/Wikimedia Commons; Source: http://commons.wikimedia.org/wiki/File:Lipid_bilayer_expansion_hypothesis_of_anesthetic_effect.png; License: CC BY-NC 3.0
    2. [2]^ Credit: CK-12 Foundation - Joy Sheng; License: CC BY-NC 3.0
    3. [3]^ Credit: Mariana Ruiz Villarreal (Wikimedia: LadyofHats), modified by CK-12 Foundation; Source: http://commons.wikimedia.org/wiki/File:Phospholipids_aqueous_solution_structures.svg; License: CC BY-NC 3.0
    4. [4]^ Credit: Mariana Ruiz Villarreal (Wikimedia: LadyofHats), modified by CK-12 Foundation; Source: http://commons.wikimedia.org/wiki/File:Cell_membrane_detailed_diagram_en.svg; License: CC BY-NC 3.0

    Explore More

    Sign in to explore more, including practice questions and solutions for Phospholipids.
    Please wait...
    Please wait...
    Add Note
    Please to create your own Highlights / Notes