<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Quantum Mechanics

Study of motion of atomic or subatomic particles.

Atoms Practice
Estimated2 minsto complete
Practice Quantum Mechanics
This indicates how strong in your memory this concept is
Estimated2 minsto complete
Practice Now
Turn In
Quantum Mechanics

How do you study something that seemingly makes no sense? We talk about electrons being in orbits and it sounds like we can tell where that electron is at any moment. We can draw pictures of electrons in orbit, but the reality is that we just don’t know exactly where they are. We are going to take a quick look at an area of science that even leaves scientists puzzled. When asked about quantum mechanics, Niels Bohr (who proposed the Bohr model of the atom) said: “Anyone who is not shocked by quantum theory has not understood it”. Richard Feynman (one of the founders of modern quantum theory) stated: “I think I can safely say that nobody understands quantum theory”. So, let’s take a short trip into a land that challenges our every-day world.

Quantum Mechanics

The study of motion of large objects such as baseballs is called mechanics, or more specifically classical mechanics. Because the quantum nature of the electron and other tiny particles moving at high speeds, classical mechanics is inadequate to accurately describe their motion. Quantum mechanics is the study of the motion of objects that are atomic or subatomic in size and thus demonstrate wave-particle duality. In classical mechanics, the size and mass of the objects involved effectively obscures any quantum effects so that such objects appear to gain or lose energies in any amounts. Particles whose motion is described by quantum mechanics gain or lose energy in the small pieces called quanta.

One of the fundamental (and hardest to understand) principles of quantum mechanics is that the electron is both a particle and a wave. In the everyday macroscopic world of things we can see, something cannot be both. But this duality can exist in the quantum world of the submicroscopic at the atomic scale.

At the heart of quantum mechanics is the idea that we cannot specify accurately the location of an electron. All we can say is that there is a probability that it exists within this certain volume of space. The scientist Erwin Schrödinger developed an equation that deals with these calculations, which we will not pursue at this time.

Picture of Erwin Schrodinger

Source: http://commons.wikimedia.org/wiki/File:Erwin_Schr%C3%B6dinger.jpg
License: CC BY-NC 3.0

Erwin Schrödinger[Figure1]




  • Quantum mechanics involves the study of material at the atomic level.
  • This field deals with probabilities since we cannot definitely locate a particle.


  1. What does quantum mechanics deal with?
  2. How would you describe an electron?
  3. What did Schrödinger demonstrate about the location of a particle?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Explore More

Sign in to explore more, including practice questions and solutions for Quantum Mechanics.
Please wait...
Please wait...