<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Skip Navigation

Real and Ideal Gases

Defines two different types of gases

Atoms Practice
Estimated4 minsto complete
Practice Real and Ideal Gases
This indicates how strong in your memory this concept is
Estimated4 minsto complete
Practice Now
Turn In
Real and Ideal Gases

Intermolecular forces can cause deviations from ideality in gases

Credit: User:Jü/Wikimedia Commons
Source: http://commons.wikimedia.org/wiki/File:Isomere_Ethanol_Dimethylether.png
License: CC BY-NC 3.0

Location, Location, Location

The behavior of a molecule depends a lot on its structure. We can have two compounds with the same number of atoms and yet they act very differently. Ethanol (C2H5OH) is a clear liquid that has a boiling point of about 79°C. Dimethylether (CH3OCH3) has the same number of carbons, hydrogens, and oxygens, but boils at a much lower temperature (-25°C). The difference lies in the amount of intermolecular interaction (strong H-bonds for ethanol, weak van der Waals force for the ether).

Real and Ideal Gases

An ideal gas is one that follows the gas laws at all conditions of temperature and pressure. To do so, the gas would need to completely abide by the kinetic-molecular theory. The gas particles would need to occupy zero volume and they would need to exhibit no attractive forces what so ever toward each other. Since neither of those conditions can be true, there is no such thing as an ideal gas. A real gas is a gas that does not behave according to the assumptions of the kinetic-molecular theory. Fortunately, at the conditions of temperature and pressure that are normally encountered in a laboratory, real gases tend to behave very much like ideal gases.

Under what conditions then, do gases behave least ideally? When a gas is put under high pressure, its molecules are forced closer together as the empty space between the particles is diminished. A decrease in the empty space means that the assumption that the volume of the particles themselves is negligible is less valid. When a gas is cooled, the decrease in kinetic energy of the particles causes them to slow down. If the particles are moving at slower speeds, the attractive forces between them are more prominent. Another way to view it is that continued cooling the gas will eventually turn it into a liquid and a liquid is certainly not an ideal gas anymore (see liquid nitrogen in Figure below). In summary, a real gas deviates most from an ideal gas at low temperatures and high pressures. Gases are most ideal at high temperature and low pressure.

Liquid nitrogen is at such low temperatures that it is no longer a gas

Credit: Flickr: andrechinn
Source: http://www.flickr.com/photos/andrec/2699842079/
License: CC BY-NC 3.0

Nitrogen gas that has been cooled to 77 K has turned to a liquid and must be stored in a vacuum insulated container to prevent it from rapidly vaporizing.[Figure2]

Figure below shows a graph of \begin{align*}\frac{PV}{RT}\end{align*} plotted against pressure for 1 mol of a gas at three different temperatures - 200 K, 500 K, and 1000 K. An ideal gas would have a value of 1 for that ratio at all temperatures and pressures and the graph would simply be a horizontal line. As can be seen, deviations from an ideal gas occur. As the pressure begins to rise, the attractive forces cause the volume of the gas to be less than expected and the value of \begin{align*}\frac{PV}{RT}\end{align*} drops under 1. Continued pressure increase results in the volume of the particles to become significant and the value of  \begin{align*}\frac{PV}{RT}\end{align*} rises to greater than 1. Notice, that the magnitude of the deviations from ideality is greatest for the gas at 200 K and least for the gas at 1000 K.

Real gases deviate from ideal gases at high pressures and at low temperatures

Credit: CK-12 Foundation - Christopher Auyeung
License: CC BY-NC 3.0

Real gases deviate from ideal gases at high pressures and at low temperatures.[Figure3]

The ideality of a gas also depends on the strength and type of intermolecular attractive forces that exist between the particles. Gases whose attractive forces are weak are more ideal than those with strong attractive forces. At the same temperature and pressure, neon is more ideal than water vapor because neon’s atoms are only attracted by weak dispersion forces, while water vapor’s molecules are attracted by relatively stronger hydrogen bonds. Helium is a more ideal gas than neon because its smaller number of electrons means that helium’s dispersion forces are even weaker than those of neon.


  • The properties of real gases and their deviations from ideality are described.


  1. What becomes more significant as the pressure increases?
  2. Do the attractive forces between gas particles become more prominent at higher or lower temperatures?
  3. Would HCl gas be more or less ideal than helium?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

  1. [1]^ Credit: User:Jü/Wikimedia Commons; Source: http://commons.wikimedia.org/wiki/File:Isomere_Ethanol_Dimethylether.png; License: CC BY-NC 3.0
  2. [2]^ Credit: Flickr: andrechinn; Source: http://www.flickr.com/photos/andrec/2699842079/; License: CC BY-NC 3.0
  3. [3]^ Credit: CK-12 Foundation - Christopher Auyeung; License: CC BY-NC 3.0

Explore More

Sign in to explore more, including practice questions and solutions for Real and Ideal Gases.
Please wait...
Please wait...