<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Transition Metals

Characteristics and electron configuration of Group 3 - 12 of the periodic table

Estimated3 minsto complete
%
Progress
Practice Transition Metals
Progress
Estimated3 minsto complete
%
Transition Elements

Credit: Stock model: Bull-Doser; Race model: Dana60Cummins
Source: Stock model: http://commons.wikimedia.org/wiki/File:%2705-%2707_Ford_Focus_ZX5.jpg; Race model: http://commons.wikimedia.org/wiki/File:Ford_Focus_Ecoboost_Race_Car.JPG
License: CC BY-NC 3.0

What are the similarities and differences between these two cars?

From the outside, the two cars above look the same (except for the flashy paint job on the racing model).  They are the same model of the car, but one is a stock edition for regular driving while the other one is built for high-speed racing.  We really can’t tell much from the external view.  To see the differences, we need to go under the hood, take the engines apart, and look at the braking and suspension systems in order to see how the two cars differ.

Many electron configurations of elements are simple and straightforward.  We can look at the outer shell and easily understand how that set of elements will react in terms of electron gain or loss.  However, there are sets of elements that are more complex in their behavior. One such group is called the transition elements.

Credit: User:Cepheus/Wikimedia Commons, modified by CK-12 Foundation
Source: http://commons.wikimedia.org/wiki/File:Periodic_table.svg
License: CC BY-NC 3.0

Transition elements are the elements that are found in Groups 3-12 (old groups IIA-IIB) on the periodic table (salmon-colored block in the middle of the table). The term refers to the fact that the d sublevel, which is in the process of being filled, is in a lower principal energy level than the \begin{align*}s\end{align*} sublevel filled before it. For example, the electron configuration of scandium, the first transition element, is [Ar]3d14s2. Remember that the configuration is reversed from the fill order – the 4s filled before the 3d begins. Because they are all metals, the transition elements are often called the transition metals. As a group, they display typical metallic properties and are less reactive than the metals in Groups 1 and 2. Some of the more familiar ones are so unreactive that they can be found in nature in their free, or uncombined state. These include platinum, gold, and silver.  Because of this unique filling order, the transition elements are often referred to as “d-block” elements.

Credit: Courtesy of US Geological Survey
Source: http://commons.wikimedia.org/wiki/File:SilverUSGOV.jpg
License: CC BY-NC 3.0

Piece of silver.[Figure3]

Compounds of many transition elements are distinctive for being widely and vividly colored. As visible light passes through a transition metal compound dissolved in water, the d-orbitals absorb light of various energies. The visible light of a given energy level which is not absorbed produces a distinctly colored solution.

Credit: Ben Mills (Wikimedia: Benjah-bmm27)
Source: http://commons.wikimedia.org/wiki/File:Coloured-transition-metal-solutions.jpg
License: CC BY-NC 3.0

Transition metal compounds dissolved in water exhibit a wide variety of bright colors. From left to right are shown solutions of cobalt(II) nitrate, potassium dichromate, potassium chromate, nickel(II) chloride, copper(II) sulfate, and potassium permanganate.[Figure4]

Summary

• The transition elements are found in groups IIIA-IIB (new groups 3-12).
• These elements are characterized by having unfilled d sublevels.
• In general, the next higher s sublevel is already filled or has one electron missing.
• Many transition element compounds are brightly colored due to the inner-level d electron transitions.

Review

1. List five different transition elements, giving their name, chemical symbol, and atomic number.
2. What is unique about the transition elements in terms of electron configurations?
3. Why are these elements often referred to as “d-block” elements?
4. Which transition group elements can be found in their free state in nature?
5. Why do many transition element compounds have bright colors?

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes