<meta http-equiv="refresh" content="1; url=/nojavascript/"> Determining Relative Ages ( Read ) | Earth Science | CK-12 Foundation
Dismiss
Skip Navigation
You are viewing an older version of this Concept. Go to the latest version.

Determining Relative Ages

%
Best Score
Practice Determining Relative Ages
Practice
Best Score
%
Practice Now
Determining Relative Ages
 0  0  0

What are the relative ages of these rocks?

This photo shows rock layers and a fault—the fault is the large diagonal crack running through this rock. These features can tell us several things about relative age. Unless the rock was turned over somehow, we can assume that the layers on top are younger than the layers on the bottom. Since the fault separates the layers, we can tell that the fault occurred after all the layers were deposited.

Determining the Relative Ages of Rocks

Steno’s principles are essential for determining the relative ages of rocks and rock layers. Remember that in relative dating, scientists do not determine the exact age of a fossil or rock. They look at a sequence of rocks to try to decipher when an event occurred relative to the other events represented in that sequence. The relative age of a rock, then, is its age in comparison with other rocks. (1) Do you know which rock is older and which is younger? (2) Do you know how old the rock's layers are in years? For relative ages, you know #1 but not #2.

An interactive website on relative ages and geologic time is found here: http://www.ucmp.berkeley.edu/education/explorations/tours/geotime/gtpage1.html .

In some cases, it is very tricky to determine the sequence of events that leads to a certain formation. In the picture below, can you figure out what happened in what order ( Figure below )? Write it down and then check the following paragraphs.

A geologic cross section: Sedimentary rocks (A-C), igneous intrusion (D), fault (E).

The principle of cross-cutting relationships states that a fault or intrusion is younger than the rocks that it cuts through. The fault cuts through all three sedimentary rock layers (A, B, and C) and also the intrusion (D). So the fault must be the youngest feature. The intrusion (D) cuts through the three sedimentary rock layers, so it must be younger than those layers. By the law of superposition, C is the oldest sedimentary rock, B is younger and A is still younger.

The full sequence of events is:

  1. Layer C formed.
  2. Layer B formed.
  3. Layer A formed.
  4. After layers A-B-C were present, intrusion D cut across all three.
  5. Fault E formed, shifting rocks A through C and intrusion D.
  6. Weathering and erosion created a layer of soil on top of layer A.

Vocabulary

  • relative age : Age of an object in comparison with the age of other objects.

Summary

  • The oldest rock units lie beneath the younger ones.
  • By the principle of cross-cutting relationships (and common sense), we know that something must exist before something else can cut across it.
  • The history of a section of rocks can be deciphered using the principles outlined in this Concept.

Practice

Use the resource below to answer the questions that follow.

  • Relative versus Absolute Dating at
  1. What is relative dating?
  2. What is the problem with relative dating?
  3. Describe the law of supposition.
  4. What is absolute dating?
  5. Which type of dating gives you an exact date?

Review

  1. What is relative age? How does it differ from absolute age?
  2. Why do the principles of relative dating not indicate the absolute age of a rock unit?
  3. Under what circumstances would a rock unit with an older fossil be above a rock until with a younger fossil?

Image Attributions

Reviews

Email Verified
Well done! You've successfully verified the email address .
OK
Please wait...
Please wait...

Original text