<meta http-equiv="refresh" content="1; url=/nojavascript/"> Radiometric Dating ( Read ) | Earth Science | CK-12 Foundation
Dismiss
Skip Navigation

Radiometric Dating

%
Best Score
Practice Radiometric Dating
Practice
Best Score
%
Practice Now

Radiometric Dating

How do you date a rock (and who would want to)?

How you date a rock depends on what type of rock it is and how old it might be. Different radioactive isotopes have different half lives and so they are useful for dating different types and ages of rocks. Who would want to? Why, geologists, of course!

Radiometric Dating of Rocks

Radiometric dating is the process of using the concentrations of radioactive substances and daughter products to estimate the age of a material. Different isotopes are used to date materials of different ages. Using more than one isotope helps scientists to check the accuracy of the ages that they calculate.

Radiocarbon Dating

Radiocarbon dating is used to find the age of once-living materials between 100 and 50,000 years old. This range is especially useful for determining ages of human fossils and habitation sites ( Figure below ).

Carbon 14 dating can tell us the age of these cave paintings

Carbon isotopes from the black material in these cave paintings places their creating at about 26,000 to 27,000 years BP (before present).

The atmosphere contains three isotopes of carbon: carbon-12, carbon-13 and carbon-14. Only carbon-14 is radioactive; it has a half-life of 5,730 years. The amount of carbon-14 in the atmosphere is tiny and has been relatively stable through time.

Plants remove all three isotopes of carbon from the atmosphere during photosynthesis. Animals consume this carbon when they eat plants or other animals that have eaten plants. After the organism’s death, the carbon-14 decays to stable nitrogen-14 by releasing a beta particle. The nitrogen atoms are lost to the atmosphere, but the amount of carbon-14 that has decayed can be estimated by measuring the proportion of radioactive carbon-14 to stable carbon-12. As time passes, the amount of carbon-14 decreases relative to the amount of carbon-12.

A video of carbon-14 decay is seen here: http://www.youtube.com/watch?v=81dWTeregEA ; a longer explanation is here: http://www.youtube.com/watch?v=udkQwW6aLik .

Potassium-Argon Dating

Potassium-40 decays to argon-40 with a half-life of 1.26 billion years. Argon is a gas so it can escape from molten magma, meaning that any argon that is found in an igneous crystal probably formed as a result of the decay of potassium-40. Measuring the ratio of potassium-40 to argon-40 yields a good estimate of the age of that crystal.

Potassium is common in many minerals, such as feldspar, mica, and amphibole. With its half-life, the technique is used to date rocks from 100,000 years to over a billion years old. The technique has been useful for dating fairly young geological materials and deposits containing the bones of human ancestors.

Uranium-Lead Dating

Two uranium isotopes are used for radiometric dating.

  • Uranium-238 decays to lead-206 with a half-life of 4.47 billion years.
  • Uranium-235 decays to form lead-207 with a half-life of 704 million years.

Uranium-lead dating is usually performed on zircon crystals ( Figure below ). When zircon forms in an igneous rock, the crystals readily accept atoms of uranium but reject atoms of lead. If any lead is found in a zircon crystal, it can be assumed that it was produced from the decay of uranium.

Zircon is used for uranium-lead dating

Zircon crystal.

Uranium-lead dating is useful for dating igneous rocks from 1 million years to around 4.6 billion years old. Zircon crystals from Australia are 4.4 billion years old, among the oldest rocks on the planet.

Limitations of Radiometric Dating

Radiometric dating is a very useful tool for dating geological materials but it does have limits:

  1. The material being dated must have measurable amounts of the parent and/or the daughter isotopes. Ideally, different radiometric techniques are used to date the same sample; if the calculated ages agree, they are thought to be accurate.
  2. Radiometric dating is not very useful for determining the age of sedimentary rocks. To estimate the age of a sedimentary rock, geologists find nearby igneous rocks that can be dated and use relative dating to constrain the age of the sedimentary rock.

Using Radiometric Ages to Date Other Materials

As you've learned, radiometric dating can only be done on certain materials. But these important numbers can still be used to get the ages of other materials! How would you do this? One way is to constrain a material that cannot be dated by one or more that can. For example, if sedimentary rock A is below volcanic rock B and the age of volcanic rock B is 2.0 million years, then you know that sedimentary rock A is older than 2.0 million years. If sedimentary rock A is above volcanic rock C and it's age is 2.5 million years then you know that sedimentary rock A is between 2.0 and 2.5 million years. In this way, geologists can figure out the approximate ages of many different rock formations.

Summary

  • Radiocarbon is useful for relatively young, carbon-based materials; other longer-lived isotopes are good for older rocks and minerals.
  • Different isotope pairs are useful for certain materials of certain ages.
  • Radiometric dating cannot be used if parent or daughter are not measurable or if one or the other has been lost from the system.

Practice

Use this resource to answer the questions that follow.

Radionetric Dating

http://www.youtube.com/watch?v=1920gi3swe4

1. What do scientists want to answer with radiometric dating?

2. What is the easiest way to date rocks?

3. How do we get actual dates on rocks?

4. How is the rock crushed?

5. What are scientists looking for in this rock?

6. Who came up with the principle of radiometric dating?

7. What is the mass spectrometer? Who invented it?

8. What is the spectrometer separating in this rock?

9. Why is the dating of rocks important?

10. What is the age of the Earth?

Review

1. How would you determine which isotope pair to use for a particular material?

2. How does radiocarbon dating work and on what materials does it work best on?

3. What types of rocks are best fro radiometric dating and why?

Image Attributions

Reviews

Email Verified
Well done! You've successfully verified the email address .
OK
Please wait...
Please wait...

Original text