<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) and Privacy Policy (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use and Privacy Policy.

30-60-90 Right Triangles

Hypotenuse equals twice the smallest leg, while the larger leg is sqrt(3) times the smallest.

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice 30-60-90 Right Triangles
Practice
Progress
Estimated5 minsto complete
%
Practice Now
30-60-90 Right Triangles

30-60-90 Right Triangles

One of the two special right triangles is called a 30-60-90 triangle, after its three angles.

30-60-90 Theorem: If a triangle has angle measures \begin{align*}30^\circ, 60^\circ\end{align*} and \begin{align*}90^\circ\end{align*}, then the sides are in the ratio \begin{align*}x:x \sqrt{3}:2x\end{align*}.

The shorter leg is always \begin{align*}x\end{align*}, the longer leg is always \begin{align*}x \sqrt{3}\end{align*}, and the hypotenuse is always \begin{align*}2x\end{align*}. If you ever forget these theorems, you can still use the Pythagorean Theorem.

What if you were given a 30-60-90 right triangle and the length of one of its side? How could you figure out the lengths of its other sides?

 

 

Examples

Example 1

Find the value of \begin{align*}x\end{align*} and \begin{align*}y\end{align*}.

We are given the longer leg.

\begin{align*}& x \sqrt{3} = 12\\ & x = \frac{12}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{12 \sqrt{3}}{3} = 4 \sqrt{3}\\ & \text{The hypotenuse is}\\ & y = 2(4 \sqrt{3}) = 8 \sqrt{3}\end{align*}

Example 2

Find the value of \begin{align*}x\end{align*} and \begin{align*}y\end{align*}.

We are given the hypotenuse.

\begin{align*}& 2x =16\\ & x = 8\\ & \text{The longer leg is}\\ & y = 8 \cdot \sqrt{3} = 8 \sqrt{3}\end{align*}

Example 3

Find the length of the missing sides.

We are given the shorter leg. If \begin{align*}x=5\end{align*}, then the longer leg, \begin{align*}b=5 \sqrt{3}\end{align*}, and the hypotenuse, \begin{align*}c=2(5)=10\end{align*}.

Example 4

Find the length of the missing sides.

We are given the hypotenuse. \begin{align*}2x=20\end{align*}, so the shorter leg, \begin{align*}f = \frac{20}{2} = 10\end{align*}, and the longer leg, \begin{align*}g=10 \sqrt{3}\end{align*}.

Example 5

A rectangle has sides 4 and \begin{align*}4 \sqrt{3}\end{align*}. What is the length of the diagonal?

If you are not given a picture, draw one.

The two lengths are \begin{align*}x, x \sqrt{3}\end{align*}, so the diagonal would be \begin{align*}2x\end{align*}, or \begin{align*}2(4) = 8\end{align*}.

If you did not recognize this is a 30-60-90 triangle, you can use the Pythagorean Theorem too.

\begin{align*}4^2 + \left( 4 \sqrt{3} \right )^2 &= d^2\\ 16 + 48 &= d^2\\ d &= \sqrt{64} = 8\end{align*}

Review

  1. In a 30-60-90 triangle, if the shorter leg is 5, then the longer leg is __________ and the hypotenuse is ___________.
  2. In a 30-60-90 triangle, if the shorter leg is \begin{align*}x\end{align*}, then the longer leg is __________ and the hypotenuse is ___________.
  3. A rectangle has sides of length 6 and \begin{align*}6 \sqrt{3}\end{align*}. What is the length of the diagonal?
  4. Two (opposite) sides of a rectangle are 10 and the diagonal is 20. What is the length of the other two sides?

For questions 5-12, find the lengths of the missing sides. Simplify all radicals.

Review (Answers)

To see the Review answers, open this PDF file and look for section 8.6. 

Resources

 

My Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / notes
Show More

Vocabulary

30-60-90 Theorem

If a triangle has angle measures of 30, 60, and 90 degrees, then the sides are in the ratio x : x \sqrt{3} : 2x

30-60-90 Triangle

A 30-60-90 triangle is a special right triangle with angles of 30^\circ, 60^\circ, and 90^\circ.

Hypotenuse

The hypotenuse of a right triangle is the longest side of the right triangle. It is across from the right angle.

Legs of a Right Triangle

The legs of a right triangle are the two shorter sides of the right triangle. Legs are adjacent to the right angle.

Pythagorean Theorem

The Pythagorean Theorem is a mathematical relationship between the sides of a right triangle, given by a^2 + b^2 = c^2, where a and b are legs of the triangle and c is the hypotenuse of the triangle.

Radical

The \sqrt{}, or square root, sign.

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for 30-60-90 Right Triangles.
Please wait...
Please wait...