<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
You are viewing an older version of this Concept. Go to the latest version.

ASA and AAS Triangle Congruence

Two sets of corresponding angles and any corresponding set of sides prove congruent triangles.

Estimated7 minsto complete
%
Progress
Practice ASA and AAS Triangle Congruence
Progress
Estimated7 minsto complete
%
ASA and AAS Triangle Congruence

The information for the triangles below looks to be “AAS”. How could you use “ASA” to verify that the triangles are congruent?

Guidance

If two triangles are congruent it means that all corresponding angle pairs and all corresponding sides are congruent. However, in order to be sure that two triangles are congruent, you do not necessarily need to know that all angle pairs and side pairs are congruent. Consider the triangles below.

In these triangles, you can see that , , and . The information you know about the congruent corresponding parts of these triangles is an angle, a side, and then another angle. This is commonly referred to as “angle-side-angle” or “ASA”.

The ASA criterion for triangle congruence states that if two triangles have two pairs of congruent angles and the common side of the angles in one triangle is congruent to the corresponding side in the other triangle, then the triangles are congruent.

In the examples, you will use rigid transformations to show why the above ASA triangles must be congruent overall, even though you don't know the lengths of all the sides and the measures of all the angles.

“Angle-angle-side” or “AAS” is another criterion for triangle congruence that directly follows from ASA.

The AAS criterion for triangle congruence states that if two triangles have two pairs of congruent angles and a non-common side of the angles in one triangle is congruent to the corresponding side in the other triangle, then the triangles are congruent.

Example A

Perform a rigid transformation to bring point  to point .

Solution: Draw a vector from point  to point . Translate  along the vector to create .

Example B

Rotate  to map  to .

Solution: Measure . In this case, .

Rotate  clockwise that number of degrees about point  to create . Note that because and rigid transformations preserve distance,  matches up perfectly with .

Example C

Reflect  to map it to . Can you be confident that the triangles are congruent?

Solution: Reflect  across  (which is the same as ).

Because  and , the triangles must match up exactly (in particular,  must map to ), and the triangles are congruent.

This means that even though you didn't know all the side lengths and angle measures, because you knew two pairs of angles and the included sides were congruent, the triangles had to be congruent overall. At this point you can use the ASA criterion for showing triangles are congruent without having to go through all of these transformations each time (but make sure you can explain why ASA works in terms of the rigid transformations!).

Concept Problem Revisited

Because the three angles of a triangle always have a sum of  and . Therefore, the triangles are congruent by ASA due to the fact that , , .

This example shows how if ASA is a criterion for triangle congruence, then AAS must also be a criterion for triangle congruence.

Vocabulary

AAS, or Angle-Angle-Side, is a criterion for triangle congruence. The AAS criterion for triangle congruence states that if two triangles have two pairs of congruent angles and a non-common side of the angles in one triangle is congruent to the corresponding side in the other triangle, then the triangles are congruent.

ASA, or Angle-Side-Angle is a criterion for triangle congruence. If two triangles have two pairs of congruent angles and the common side of the angles in one triangle is congruent to the corresponding side in the other triangle, then the triangles are congruent.

Rigid transformations are transformations that preserve distance and angles. The rigid transformations are reflections, rotations, and translations.

Two figures are congruent if a sequence of rigid transformations will carry one figure to the other. Congruent figures will always have corresponding angles and sides that are congruent as well.

Guided Practice

Are the following triangles congruent? Explain.

1.

2.

3. What additional information would you need in order to be able to state that the triangles below are congruent by AAS?

1. The triangles are congruent by ASA.

2. The triangles are not necessarily congruent. The information for  is AAS while the information for  is ASA. There is not enough information about corresponding sides that are congruent.

3. You would need to know that .

Practice

1. What does ASA stand for? How is it used?

2. What does AAS stand for? How is it used?

3. Draw an example of two triangles that must be congruent due to ASA.

4. Draw an example of two triangles that must be congruent due to AAS.

For each pair of triangles below, state if they are congruent by ASA, congruent by AAS, or if there is not enough information to determine whether or not they are congruent.

5.

6.

7.

8.

9.

10. What is the minimum additional information you would need in order to be able to state that the triangles below are congruent by AAS? Assume that points , , and  are collinear.

11. What is the minimum additional information you would need in order to be able to state that the triangles below are congruent by ASA? Assume that points , , and  are collinear.

12. What is the minimum additional information you would need in order to be able to state that the triangles below are congruent by AAS?

13. What is the minimum additional information you would need in order to be able to state that the triangles below are congruent by ASA?

14. If you can show that two triangles are congruent with AAS, can you also show that they are congruent with ASA?

15. Show how the ASA criterion for triangle congruence works: use rigid transformations to help explain why the triangles below are congruent.

Vocabulary Language: English

AAS (Angle-Angle-Side)

AAS (Angle-Angle-Side)

If two angles and a non-included side in one triangle are congruent to two angles and the corresponding non-included side in another triangle, then the triangles are congruent.
Angle Side Angle Triangle

Angle Side Angle Triangle

The term 'angle-side-angle triangle' refers to a triangle with known measures of two angles and the length of the side between them.
ASA

ASA

ASA, angle-side-angle, refers to two known angles in a triangle with one known side between the known angles.
Congruent

Congruent

Congruent figures are identical in size, shape and measure.
Triangle Congruence

Triangle Congruence

Triangle congruence occurs if 3 sides in one triangle are congruent to 3 sides in another triangle.
Rigid Transformation

Rigid Transformation

A rigid transformation is a transformation that preserves distance and angles, it does not change the size or shape of the figure.