<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />
Dismiss
Skip Navigation
Our Terms of Use (click here to view) have changed. By continuing to use this site, you are agreeing to our new Terms of Use.

Angle Measurement

Measurement of angles with protractors and addition of angles.

Atoms Practice
Estimated5 minsto complete
%
Progress
Practice Angle Measurement
Practice
Progress
Estimated5 minsto complete
%
Practice Now
Turn In
Angle Measurement

Lesson 1.5: Angle Measurement

We measure a line segment’s length with a ruler. Angles are measured with something called a protractor. A protractor is a measuring device that measures how “open” an angle is. Angles are measured in degrees, and labeled with a \begin{align*}^\circ\end{align*} symbol.

The Angle Addition Postulate states that if \begin{align*}B\end{align*} is on the interior of \begin{align*}\angle ADC\end{align*}, then \begin{align*}m \angle ADC = m \angle ADB + m \angle BDC\end{align*}. See the picture below.


Ticket In/Ticket Out Activity:

Example A

Measure the three angles using a protractor.

Example B

What is the measure of the angle shown below?

Example C

What is \begin{align*}m \angle QRT\end{align*} in the diagram below?

Example D

Draw a \begin{align*}135^\circ\end{align*} angle.

Vocabulary

A protractor is a measuring device that measures how “open” an angle is. Angles are measured in degrees, and labeled with a \begin{align*}^\circ\end{align*} symbol. A compass is a tool used to draw circles and arcs.

Warm-Up Activity/Guided Practice:

1. Use a protractor to measure \begin{align*}\angle RST\end{align*} below.

2. What is \begin{align*}m \angle LMN\end{align*} if \begin{align*}m \angle LMO = 85^\circ\end{align*} and \begin{align*}m \angle NMO = 53^\circ\end{align*}?

3. If \begin{align*}m \angle ABD = 100^\circ\end{align*}, find \begin{align*}x\end{align*} and \begin{align*}m \angle ABC\end{align*} and \begin{align*}m \angle CBD\end{align*}?

Practice

1. What is \begin{align*}m \angle LMN\end{align*} if \begin{align*}m \angle LMO = 85^\circ\end{align*} and \begin{align*}m \angle NMO = 53^\circ\end{align*}?

2. If \begin{align*}m\angle ABD = 100^\circ\end{align*}, find \begin{align*}x\end{align*}.

For questions 3-6, determine if the statement is true or false.

  1. For an angle \begin{align*}\angle ABC, C\end{align*} is the vertex.
  2. For an angle \begin{align*}\angle ABC, \overline{AB}\end{align*} and \begin{align*}\overline{BC}\end{align*} are the sides.
  3. The \begin{align*}m\end{align*} in front of \begin{align*}m \angle ABC\end{align*} means measure.
  4. The Angle Addition Postulate says that an angle is equal to the sum of the smaller angles around it.

For 7-12, draw the angle with the given degree, using a protractor and a ruler.

  1. \begin{align*}55^\circ\end{align*}
  2. \begin{align*}92^\circ\end{align*}
  3. \begin{align*}178^\circ\end{align*}
  4. \begin{align*}5^\circ\end{align*}
  5. \begin{align*}120^\circ\end{align*}
  6. \begin{align*}73^\circ\end{align*}

For 13-16, use a protractor to determine the measure of each angle.

Solve for \begin{align*}x\end{align*}.

  1. \begin{align*}m\angle ADC = 56^\circ\end{align*}
  2. \begin{align*}m \angle ADC = 130^\circ\end{align*}
  3. \begin{align*}m \angle ADC = (16x - 55)^\circ\end{align*}
  4. \begin{align*}m \angle ADC = ( 9x - 80)^\circ\end{align*}

Notes/Highlights Having trouble? Report an issue.

Color Highlighted Text Notes
Please to create your own Highlights / Notes
Show More

Image Attributions

Explore More

Sign in to explore more, including practice questions and solutions for Angle Measurement.
Please wait...
Please wait...