<img src="https://d5nxst8fruw4z.cloudfront.net/atrk.gif?account=iA1Pi1a8Dy00ym" style="display:none" height="1" width="1" alt="" />

# Angle Measurement

## Measurement of angles with protractors and addition of angles.

Estimated5 minsto complete
%
Progress
Practice Angle Measurement
Progress
Estimated5 minsto complete
%
Angle Measurement

### Lesson 1.5: Angle Measurement

We measure a line segment’s length with a ruler. Angles are measured with something called a protractor. A protractor is a measuring device that measures how “open” an angle is. Angles are measured in degrees, and labeled with a \begin{align*}^\circ\end{align*} symbol.

The Angle Addition Postulate states that if B\begin{align*}B\end{align*} is on the interior of ADC\begin{align*}\angle ADC\end{align*}, then mADC=mADB+mBDC\begin{align*}m \angle ADC = m \angle ADB + m \angle BDC\end{align*}. See the picture below.

### Ticket In/Ticket Out Activity:

#### Example A

Measure the three angles using a protractor.

#### Example B

What is the measure of the angle shown below?

#### Example C

What is mQRT\begin{align*}m \angle QRT\end{align*} in the diagram below?

#### Example D

Draw a 135\begin{align*}135^\circ\end{align*} angle.

### Vocabulary

A protractor is a measuring device that measures how “open” an angle is. Angles are measured in degrees, and labeled with a \begin{align*}^\circ\end{align*} symbol. A compass is a tool used to draw circles and arcs.

### Warm-Up Activity/Guided Practice:

1. Use a protractor to measure RST\begin{align*}\angle RST\end{align*} below.

2. What is mLMN\begin{align*}m \angle LMN\end{align*} if mLMO=85\begin{align*}m \angle LMO = 85^\circ\end{align*} and mNMO=53\begin{align*}m \angle NMO = 53^\circ\end{align*}?

3. If mABD=100\begin{align*}m \angle ABD = 100^\circ\end{align*}, find x\begin{align*}x\end{align*} and mABC\begin{align*}m \angle ABC\end{align*} and mCBD\begin{align*}m \angle CBD\end{align*}?

### Practice

1. What is mLMN\begin{align*}m \angle LMN\end{align*} if mLMO=85\begin{align*}m \angle LMO = 85^\circ\end{align*} and mNMO=53\begin{align*}m \angle NMO = 53^\circ\end{align*}?

2. If mABD=100\begin{align*}m\angle ABD = 100^\circ\end{align*}, find x\begin{align*}x\end{align*}.

For questions 3-6, determine if the statement is true or false.

1. For an angle ABC,C\begin{align*}\angle ABC, C\end{align*} is the vertex.
2. For an angle ABC,AB¯¯¯¯¯¯¯¯\begin{align*}\angle ABC, \overline{AB}\end{align*} and BC¯¯¯¯¯¯¯¯\begin{align*}\overline{BC}\end{align*} are the sides.
3. The m\begin{align*}m\end{align*} in front of mABC\begin{align*}m \angle ABC\end{align*} means measure.
4. The Angle Addition Postulate says that an angle is equal to the sum of the smaller angles around it.

For 7-12, draw the angle with the given degree, using a protractor and a ruler.

1. 55\begin{align*}55^\circ\end{align*}
2. 92\begin{align*}92^\circ\end{align*}
3. 178\begin{align*}178^\circ\end{align*}
4. 5\begin{align*}5^\circ\end{align*}
5. 120\begin{align*}120^\circ\end{align*}
6. 73\begin{align*}73^\circ\end{align*}

For 13-16, use a protractor to determine the measure of each angle.

Solve for x\begin{align*}x\end{align*}.

1. mADC=56\begin{align*}m\angle ADC = 56^\circ\end{align*}
2. mADC=130\begin{align*}m \angle ADC = 130^\circ\end{align*}
3. mADC=(16x55)\begin{align*}m \angle ADC = (16x - 55)^\circ\end{align*}
4. mADC=(9x80)\begin{align*}m \angle ADC = ( 9x - 80)^\circ\end{align*}