What if you needed a way to describe the size of an angle? After completing this Concept, you'll be able to use a protractor to measure an angle in degrees.

### Watch This

CK-12 Foundation: Chapter1MeasuringAnglesA

James Sousa: Animation of Measuring Angles with a Protractor

Watch the first part of this video.

### Guidance

We measure a line segment’s *length* with a ruler. Angles are measured with something called a ** protractor**. A protractor is a measuring device that measures how “open” an angle is. Angles are measured in degrees, and labeled with a \begin{align*}^\circ\end{align*}

Notice that there are two sets of measurements, one opening clockwise and one opening counter-clockwise, from \begin{align*}0^\circ\end{align*}

For every angle there is a number between \begin{align*}0^\circ\end{align*}

The **Angle Addition Postulate** states that if \begin{align*}B\end{align*}

##### Drawing a \begin{align*}50^\circ\end{align*} Angle with a Protractor

- Start by drawing a horizontal line across the page, about 2 in long.
- Place an endpoint at the left side of your line.
- Place the protractor on this point. Make sure to put the center point on the bottom line of the protractor on the vertex. Mark \begin{align*}50^\circ\end{align*} on the appropriate scale.
- Remove the protractor and connect the vertex and the \begin{align*}50^\circ\end{align*} mark.

This process can be used to draw any angle between \begin{align*}0^\circ\end{align*} and \begin{align*}180^\circ\end{align*}. See http://www.mathsisfun.com/geometry/protractor-using.html for an **animation** of this investigation.

##### Copying an Angle with a Compass and Straightedge

- We are going to copy the angle created in the previous investigation, a \begin{align*}50^\circ\end{align*} angle. First, draw a straight line, about 2 inches long, and place an endpoint at one end.
- With the point (non-pencil side) of the compass on the vertex, draw an arc that passes through both sides of the angle. Repeat this arc with the line we drew in #1.
- Move the point of the compass to the horizontal side of the angle we are copying. Place the point where the arc intersects this side. Open (or close) the “mouth” of the compass so you can draw an arc that intersects the other side of the arc drawn in #2. Repeat this on the line we drew in #1.
- Draw a line from the new vertex to the arc intersections.

To watch an **animation** of this construction, see http://www.mathsisfun.com/geometry/construct-anglesame.html

#### Example A

Measure the three angles using a protractor.

#### Example B

What is the measure of the angle shown below?

#### Example C

What is \begin{align*}m \angle QRT\end{align*} in the diagram below?

#### Example D

Draw a \begin{align*}135^\circ\end{align*} angle.

Watch this video for help with the Examples above.

CK-12 Foundation: Chapter1MeasuringAnglesB

### Vocabulary

A ** protractor** is a measuring device that measures how “open” an angle is. Angles are measured in

**, and labeled with a \begin{align*}^\circ\end{align*} symbol. A**

*degrees***is a tool used to draw circles and arcs.**

*compass*### Interactive Practice

### Practice

1. What is \begin{align*}m \angle LMN\end{align*} if \begin{align*}m \angle LMO = 85^\circ\end{align*} and \begin{align*}m \angle NMO = 53^\circ\end{align*}?

2. If \begin{align*}m\angle ABD = 100^\circ\end{align*}, find \begin{align*}x\end{align*}.

For questions 3-6, determine if the statement is true or false.

- For an angle \begin{align*}\angle ABC, C\end{align*} is the vertex.
- For an angle \begin{align*}\angle ABC, \overline{AB}\end{align*} and \begin{align*}\overline{BC}\end{align*} are the sides.
- The \begin{align*}m\end{align*} in front of \begin{align*}m \angle ABC\end{align*} means measure.
- The Angle Addition Postulate says that an angle is equal to the sum of the smaller angles around it.

For 7-12, draw the angle with the given degree, using a protractor and a ruler.

- \begin{align*}55^\circ\end{align*}
- \begin{align*}92^\circ\end{align*}
- \begin{align*}178^\circ\end{align*}
- \begin{align*}5^\circ\end{align*}
- \begin{align*}120^\circ\end{align*}
- \begin{align*}73^\circ\end{align*}

For 13-16, use a protractor to determine the measure of each angle.

Solve for \begin{align*}x\end{align*}.

- \begin{align*}m\angle ADC = 56^\circ\end{align*}
- \begin{align*}m \angle ADC = 130^\circ\end{align*}
- \begin{align*}m \angle ADC = (16x - 55)^\circ\end{align*}
- \begin{align*}m \angle ADC = ( 9x - 80)^\circ\end{align*}